(116 days)
The GC85A Digital X-ray Imaging System is intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
The GC70 Digital X-ray Imaging System is intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
The GU60A & GU60A-65 Digital X-ray Imaging Systems are intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
The GF50 Digital X-ray Imaging System is intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
The GF50A Digital X-ray Imaging System is intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
The GR40CW Digital X-ray Imaging System is intended for use in general projection radiographic applications wherever conventional screen-film systems or CR systems may be used. This device is not intended for mammographic applications.
The GM85 Digital Mobile X-ray imaging System is intended for use in generating radiographic images of human anatomy by a qualified/trained doctor or technician. This device is not intended for mammographic applications.
GC70, GU60&GU60A-65, GF50, GF50A, GR40CW, GM85 and GC85A are used to capture images by transmitting X-ray to a patient's body. The X-ray passing through a patient's body is sent to the detector and then converted into electrical signals. These signals go through the process of amplification and digital data conversion in the signal process on the S-station, which is the Operation Software (OS) of Samsung Digital Diagnostic X-ray System, and save in DICOM file, a standard for medical imaging. The captured images are tuned up by an Image Post-processing Engine (IPE) which is exclusively installed in S-station, SAMSUNG digital X-ray operation software, and sent to the Picture Archiving & Communication System (PACS) sever for reading images.
The IPE operates, from the input image, the roles of a region-of-interest extraction, tonescale mapping, noise reduction and texture restoration. The IPE employing an advanced noise reduction algorithm (hereinafter "new IPE") is shown that the image quality of PA radiograph for average adult chest, exposed at the condition of 50% lower dose at Entrance Skin Exposure (ESE) in comparison with the condition of the conventional noise reduction algorithm (hereinafter "old IPE"), is substantially equivalent.
The provided text describes the acceptance criteria and a study proving the device meets those criteria, specifically concerning dose reduction capabilities of the Image Post-processing Engine (IPE) with an advanced noise reduction algorithm in Samsung Digital X-ray Systems (GC70, GU60A, GU60A-65, GF50, GF50A, GR40CW, GM85, and GC85A).
Here is the requested information:
Acceptance Criteria and Device Performance
1. Table of Acceptance Criteria and Reported Device Performance
The core acceptance criterion is the ability of the new IPE to reduce X-ray dose while maintaining image quality comparable to the old IPE for diagnostic confidence. The specific dose reduction percentages are the performance metrics.
Acceptance Criterion | Reported Device Performance |
---|---|
Dose Reduction for Adult Abdominal Radiographs | Up to 47.5% dose reduction for abdominal radiographs of adult, compared to the old IPE while achieving similar image quality. |
Dose Reduction for Pediatric Abdomen | Up to 45% dose reduction for pediatric abdomen, compared to the old IPE while achieving similar image quality. |
Dose Reduction for Pediatric Chest | 15.5% dose reduction for pediatric chest, compared to the old IPE while achieving similar image quality. |
Dose Reduction for Pediatric Skull | Up to 27% dose reduction for pediatric skull, compared to the old IPE while achieving similar image quality. |
2. Sample Size Used for the Test Set and Data Provenance
-
Adult Abdominal Radiograph Test Set:
- Anatomical phantom images: Number of images not specified, but taken at "various exposure condition." The study states, "the new IPE with an advanced noise reduction algorithm retained the quality of images captured at 47.5% reduced exposure in comparison with the old IPE."
- Clinical images: Number of images not specified, but used to "confirm that it was possible to reduce the dose in clinical images as well."
- Provenance: Not explicitly stated, but the submission is from Samsung Electronics Co., LTD. Republic of Korea. The clinical testing was conducted at "one medical site."
- Retrospective or Prospective: Not specified.
-
Pediatric Population Test Set (Chest, Abdomen, Skull):
- Number of images: "Series of dose-simulated images" for each body part.
- Number of patients: Not specified explicitly, but mentioned as "each patient."
- Provenance: Not explicitly stated, but the submission is from Samsung Electronics Co., LTD. Republic of Korea. The clinical testing was conducted at "one medical site."
- Retrospective or Prospective: Not specified.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Their Qualifications
-
Adult Abdominal Radiograph Test Set:
- Anatomical phantom images were reviewed by three professional radiologists.
- Clinical images were reviewed by two professional radiologists.
- Qualifications: "Professional radiologists" (no further details on experience given).
-
Pediatric Population Test Set:
- Three experienced pediatric radiologists.
- Qualifications: "Experienced pediatric radiologists" (no further details on experience given).
4. Adjudication Method for the Test Set
The adjudication method is not explicitly detailed. However, for both adult and pediatric studies, images were "scored by the 5-point grading scale" for assessment of image quality. This implies individual scoring, and for the pediatric study, "Three experienced pediatric radiologists assessed the series of dose-simulated images to decide the optimal dose for each patient." The decision for the "optimal dose" for pediatric cases suggests a consensus or agreement among these experts, but the exact method (e.g., majority vote, discussion to reach consensus) is not specified.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, and the Effect Size of How Much Human Readers Improve with AI vs. Without AI Assistance
No MRMC comparative effectiveness study was done to evaluate human readers' improvement with AI vs. without AI assistance. The study focused on the device's standalone performance in enabling dose reduction while maintaining image quality as assessed by human readers. The new IPE is a component within the imaging system, not an AI assistance tool for human readers.
6. If a Standalone (i.e., Algorithm Only Without Human-in-the-Loop Performance) Was Done
Yes, the studies evaluated the standalone performance of the new IPE algorithm in terms of enabling dose reduction while maintaining image quality. The performance was assessed by comparing images processed by the new IPE at reduced doses against images from the old IPE or a reference, with human experts providing the assessment of image quality and diagnostic appropriateness.
7. The Type of Ground Truth Used
The ground truth for both adult and pediatric studies was expert consensus/assessment of image quality and diagnostic appropriateness.
- For adult abdominal radiographs: Expert radiologists scored images based on a 5-point grading scale, considering anatomical regions, physical parameters, sharpness, and visualization.
- For pediatric populations: Experienced pediatric radiologists assessed dose-simulated images to determine the "optimal dose" at which image quality remained appropriate for diagnosis.
Additionally, phantom studies (TOR CDR radiography phantom and anthropomorphic phantom) were used to quantitatively assess image quality metrics like Contrast to Noise Ratio (CNR), Detail Compacted Contrast (DCC), and Modulation Transfer Functions (MTF).
8. The Sample Size for the Training Set
The document does not provide information about the training set size for the Image Post-processing Engine (IPE) algorithm. It focuses on the validation of the algorithm's dose reduction capabilities.
9. How the Ground Truth for the Training Set Was Established
The document does not provide information on how the ground truth for the training set was established for the IPE algorithm.
§ 892.1680 Stationary x-ray system.
(a)
Identification. A stationary x-ray system is a permanently installed diagnostic system intended to generate and control x-rays for examination of various anatomical regions. This generic type of device may include signal analysis and display equipment, patient and equipment supports, component parts, and accessories.(b)
Classification. Class II (special controls). A radiographic contrast tray or radiology diagnostic kit intended for use with a stationary x-ray system only is exempt from the premarket notification procedures in subpart E of part 807 of this chapter subject to the limitations in § 892.9.