K Number
K180287
Device Name
GSI Corti
Date Cleared
2018-05-11

(99 days)

Product Code
Regulation Number
874.1050
Panel
EN
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The GSI Corti series is indicated for testing of cochlear function in infants, children and adults by measuring otoacoustic emissions (OAEs). The OAEs are generated by a series of clicks that are directed into the ear canal. Otoacoustic emissions are low level audio-frequency sounds that are produced by the cochlea as part of the normal-hearing process. Available evidence suggests that otoacoustic emissions are generated by the cochlea's outer hair cells and that the presence of OAEs. is an indication that the outer hair cells are vidence indicates that these emissions normally occur with normal hearing, or at most, mild hearing loss (usually 30-40 dB HL). The majority of hearing-impaired individuals will be identified by a simple OAE test.

Device Description

Corti test system provides rapid measurement and documentation of Distortion Product Otoacoustic Emissions (DPOAEs) or Transient Evoked Otoacoustic Emissions (TEOAEs) at several frequencies.

The system consists of the instrument, probe, printer, single-use eartips replaceable probe tubes and other accessories. The Corti instrument contains the hardware and software for generating the test stimuli, measuring and displaying the OAEs, and storing the results until they are printed. The plastic housing contains circuit boards that provide the signal processing and display the test results. The instrument also contains a rechargeable lithium-ion battery to power the device. The instrument uses a liquid-crystal display (LCD) and three light-emitting diodes (LEDs) to provide a visual display of test status to the operator. Four push buttons located on the keypad of the device allow the user to control testing and printing, and to reset test protocols.

The Probe houses the speaker and microphone which produce test stimuli and measure the sound pressure level (SPL) present in the sealed ear canal. Interface of the instrument to the ear canal is accomplished through disposable eartips, which fit onto the probe tube. The disposable eartips are color coded to facilitate easy selection by size.

Distortion Product Otoacoustic Emissions (DPOAEs) are acoustic signals that can be detected in the ear canal of a person with normal outer hair cell function, subsequent to stimulation of the auditory system with a pair of pure tones at frequencies f1 and f2. The resulting emission of interest is the distortion product tone at the frequency 2f1-f2.

The Corti instrument generates a series of test tones, directs them into the ear canal, and then measures the level of the DPOAE tone generated by the cochlea. By using different test frequencies, the Corti device provides an estimate of outer hair cell function over a wide range of frequencies.

Transient Evoked Otoacoustic Emissions (TEOAEs) are acoustic signals that can be detected in the ear canal of a person with normal outer hair cell function, subsequent to stimulation of the auditory system with a series of wideband clicks.

The Corti instrument generates a series of clicks, directs them into the ear canal, and then analyzes the spectrum of the returning signal, separating the noise and emission. By using band pass filters, the Corti device provides an estimate of outer hair cell function over a wide range of frequencies

AI/ML Overview

Here's a breakdown of the acceptance criteria and the study details for the GSI Corti device, based on the provided document:

1. Table of Acceptance Criteria and Reported Device Performance

The document does not explicitly state numerical acceptance criteria in a table format, nor does it provide specific numerical performance values for the GSI Corti that are directly compared against such criteria. Instead, it states that the device was validated to ensure it provides equivalent diagnostic results to an "equivalent device" (the ERO-SCAN predicate device).

The "criteria" are implied by adherence to international standards and the demonstration of "substantial equivalence."

Acceptance Criteria (Implied)Reported Device Performance
Diagnostic Equivalence to Predicate Device (ERO-SCAN)Device provides equivalent diagnostic results to the ERO-SCAN.
Conformity with Essential Principles for hearing diagnosisDemonstrated conformity.
Performance and Safety Claims met and documentedMet and documented.
Risk Management (identification, addressing, evaluation)All risks identified, addressed, and evaluated; acceptable and weighted.
Adherence to OAE International Standards (IEC 60645 series)Meets requirements from IEC 60645 series.
Adherence to EMC and Safety Standards (IEC 60601-1 series)Complies with IEC 60601-1 series.
Software Validation (per FDA Guidance, "moderate" level of concern)Software verification testing conducted and documentation provided.
Auditory Impedance Testing Characteristics and Safety Systems comparable to predicateCompared and found comparable.

2. Sample Size Used for the Test Set and Data Provenance

  • Sample Size: "A selection of test subjects" with a targeted population of approximately 80% normal hearing and 20% having a range of impairment (from complete impairment to mild hearing impairment). The exact number of subjects is not specified but is referred to as "the subject ears."
  • Data Provenance: Not explicitly stated, but it's a clinical validation study, implying prospective data collection in a controlled environment. The country of origin for the data is not mentioned.

3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts

This information is not provided in the document. The study compares the GSI Corti against a predicate device (ERO-SCAN), suggesting that the "ground truth" might be established by the results of the predicate device or by standard audiological assessments. However, the details of how the truth was established (e.g., specific expert audiologists or independent clinical diagnoses) are missing.

4. Adjudication Method for the Test Set

This information is not provided in the document.

5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study Was Done, and the Effect Size of How Much Human Readers Improve with AI vs. Without AI Assistance

This is not an MRMC study or an AI-assisted interpretation device. The GSI Corti is an audiological device that measures otoacoustic emissions. The study compares the performance of the new device to a predicate device, not the performance of human readers with or without AI assistance.

6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) Was Done

Yes, in a way. The "performance" being evaluated is of the device itself (GSI Corti) in measuring OAEs and providing diagnostic results, in comparison to another device (ERO-SCAN). There isn't a human interpreting the device's output and that output then being compared to a human baseline. The device's output is directly compared to the predicate device's output.

7. The Type of Ground Truth Used

The "ground truth" for the clinical validation was effectively the diagnostic results obtained from the predicate device (ERO-SCAN) and the known hearing status of the subjects (approximately 80% normal hearing, 20% impaired). The study aimed to determine if the GSI Corti provided "equivalent diagnostic results" to the ERO-SCAN, suggesting the ERO-SCAN's output served as the reference for equivalence.

8. The Sample Size for the Training Set

This information is not applicable or not provided. This is a device validation study, not a machine learning model training study. The device's algorithms are built into the hardware/software and are not "trained" on a dataset in the typical sense of AI/ML.

9. How the Ground Truth for the Training Set Was Established

This information is not applicable or not provided as it's not a machine learning model training study.

§ 874.1050 Audiometer.

(a)
Identification. An audiometer or automated audiometer is an electroacoustic device that produces controlled levels of test tones and signals intended for use in conducting diagnostic hearing evaluations and assisting in the diagnosis of possible otologic disorders.(b)
Classification. Class II. Except for the otoacoustic emission device, the device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter, if it is in compliance with American National Standard Institute S3.6-1996, “Specification for Audiometers,” and subject to the limitations in § 874.9.