(189 days)
Not Found
Yes
The document explicitly states that the device uses an algorithm based on supervised machine learning known as the "Advanced Spectrum Classifier".
No
The device is described as an "in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections." It does not directly treat or prevent a disease or condition.
Yes
Explanation: The "Intended Use / Indications for Use" section explicitly states, "The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections."
No
The device is described as a "mass spectrometer system" and the description details the physical process of MALDI-TOF, indicating it includes significant hardware components beyond just software.
Yes, this device is an IVD (In Vitro Diagnostic).
Here's why:
- Explicit Statement in Intended Use: The "Intended Use / Indications for Use" section clearly states: "The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections."
- Purpose: The device is intended to identify microorganisms cultured from human specimens to aid in the diagnosis of infections. This is a classic function of an in vitro diagnostic device.
- Use of Human Specimens: The device analyzes microorganisms cultured from human specimens, which is a key characteristic of IVDs.
- Laboratory Setting: The intended user is a trained microbiologist in a laboratory setting, which is where IVD testing typically occurs.
No
The letter does not state that the FDA has reviewed and approved or cleared a Predetermined Change Control Plan (PCCP) for this specific device. The field "Control Plan Authorized (PCCP) and relevant text" is listed as "Not Found".
Intended Use / Indications for Use
The Bruker Daltonics, Inc. MALDI Biotyper CA System is a mass spectrometer system using matrix-assisted laser desorption/ionization – time-of-flight (MALDI-TOF) for the identification of microorganisms cultured from human specimens.
The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections.
Product codes
PEX
Device Description
Not Found
Mentions image processing
Not Found
Mentions AI, DNN, or ML
Not Found
Input Imaging Modality
Not Found
Anatomical Site
human specimens
Indicated Patient Age Range
Not Found
Intended User / Care Setting
Not Found
Description of the training set, sample size, data source, and annotation protocol
Not Found
Description of the test set, sample size, data source, and annotation protocol
Precision/Repeatability:
Validation of the whole MALDI Biotyper CA System was performed on six (6) working days with two (2) runs/day following manufacturer's instructions for use. Ten (10) test organisms were tested in triplicate via Direct Transfer (DT) and extended Direct Transfer (eDT) in each run. If a replicate yielded a log(score)
§ 866.3361 Mass spectrometer system for clinical use for the identification of microorganisms.
(a)
Identification. A mass spectrometer system for clinical use for the identification of microorganisms is a qualitative in vitro diagnostic device intended for the identification of microorganisms cultured from human specimens. The device is comprised of an ionization source, a mass analyzer, and a spectral database. The device is indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and fungal infections.(b)
Classification. Class II (special controls). The special controls for this device are:(1) Premarket notification submissions must include detailed documentation for device software, including, but not limited to, standalone software applications and hardware-based devices that incorporate software.
(2) Premarket notification submissions must include database implementation methodology, construction parameters, and quality assurance protocols.
(3) A detailed explanation of the interpretation of results and acceptance criteria must be included in the device's 21 CFR 809.10(b)(9) compliant labeling.
(4) As part of the risk management activities performed as part of your 21 CFR 820.30 design controls, you must document an appropriate end user device training program that will be offered as part of your efforts to mitigate the risk of failure to correctly operate the instrument.
(5) Premarket notification submissions must include details on the appropriate end user device training program that will be offered while marketing the device.
0
Image /page/0/Picture/1 description: The image shows the logo for the U.S. Department of Health & Human Services. The logo consists of a circular seal with the text "DEPARTMENT OF HEALTH & HUMAN SERVICES - USA" around the perimeter. Inside the circle is a stylized image of three human profiles facing to the right, stacked on top of each other.
Food and Drug Administration 10903 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002
BRUKER DALTONICS, INC MARKUS KOSTRZEWA VICE PRESIDENT CLINICAL MASS SPECTROMETRY R&D FAHRENHEILSTRASSE-4 BREMEN 28359 DE
March 27, 2015
Re: K142677 Trade/Device Name: MALDI Biotyper CA System Regulation Number: 21 CFR 866.3361 Regulation Name: Mass spectrometer system for clinical use for the identification of microorganisms Regulatory Class: II Product Code: PEX Dated: February 27, 2015 Received: March 2, 2015
Dear Dr. Kostrzewa:
We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food. Drug. and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.
If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.
Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the
1
electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.
If you desire specific advice for your device on our labeling regulations (21 CFR Parts 801 and 809), please contact the Division of Industry and Consumer Education at its toll-free number (800) 638 2041 or (301) 796-7100 or at its Internet address
http://www.fda.gov/MedicalDevices/Resourcesfor You/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to
http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.
You may obtain other general information on your responsibilities under the Act from the Division of Industry and Consumer Education at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address
http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.
Sincerely yours,
Uwe Scherf - S for
Sally Hojvat, M.Sc., PhD. Director Division of Microbiology Devices Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health
Enclosure
2
Indications for Use
510(k) Number (if known) K142677
Device Name
MALDI Biotyper CA System
Indications for Use (Describe)
The Bruker Daltonics, Inc. MALDI Biotyper CA System is a mass spectrometer system using matrix-assisted laser desorption/ionization – time-of-flight (MALDI-TOF) for the identification of microorganisms cultured from human specimens.
The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections.
BACTERIA
Achromobacter xylosoxidans Acinetobacter baumannii complex [4] Acinetobacter haemolyticus Acinetobacter johnsonii Acinetobacter junii Acinetobacter lwoffii Acinetobacter radioresistens Acinetobacter ursingii Actinomyces meyeri Actinomyces neuii Actinomyces odontolyticus Actinomyces oris Aerococcus urinae Aerococcus viridans Aeromonas salmonicida Aeromonas sp[7] Alcaligenes faecalis Anaerococcus vaginalis Bacteroides fragilis Bacteroides ovatus group Bacteroides thetaiotaomicron group Bacteroides uniformis Bacteroides vulgatus group Bordetella group[3] Bordetella hinzii Brevibacterium casei Brevundimonas diminuta group Burkholderia cepacia complex [13] Burkholderia gladioli Burkholderia multivorans Campylobacter coli Campylobacter jejuni Campylobacter ureolyticus Capnocytophaga ochracea Capnocytophaga sputigena
3
Chryseobacterium gleum Chryseobacterium indologenes Citrobacter amalonaticus complex Citrobacter freundii complex Citrobacter koseri Clostridium difficile Clostridium perfringens Corynebacterium amycolatum Corynebacterium aurimucosum group Corynebacterium bovis Corynebacterium diphtheriae Corynebacterium glucuronolyticum Corynebacterium jeikeium Corynebacterium kroppenstedtii Corynebacterium macginleyi Corynebacterium minutissimum Corynebacterium propinquum Corynebacterium pseudodiphtheriticum Corynebacterium riegelii Corynebacterium striatum group Corynebacterium tuberculostearicum Corynebacterium ulcerans Corynebacterium urealyticum Corynebacterium xerosis Cronobacter sakazakii group Cupriavidus pauculus group Delftia acidovorans group Dermacoccus nishinomiyaensis Edwardsiella tarda Eikenella corrodens Elizabethkingia meningoseptica group Enterobacter aerogenes Enterobacter amnigenus Enterobacter cloacae complex Enterococcus avium group Enterococcus casseliflavus Enterococcus faecalis Enterococcus faecium Enterococcus gallinarum Enterococcus hirae Escherichia coli Finegoldia magna Fusobacterium canifelinum Fusobacterium necrophorum Fusobacterium nucleatum Gardnerella vaginalis Gemella haemolysans Gemella sanguinis Granulicatella adiacens Haemophilus haemolyticus Haemophilus influenzae Haemophilus parahaemolyticus group Haemophilus parainfluenzae Hafnia alvei
4
Kingella kingae Klebsiella oxytoca / Raoultella ornithinolytica Klebsiella pneumoniae Kocuria kristinae Kytococcus sedentarius Lactococcus garvieae Lactococcus lactis Leuconostoc mesenteroides Macrococcus caseolyticus Micrococcus luteus Moraxella sg Branhamella catarrhalis Moraxella sg Moraxella nonliquefaciens Moraxella sg Moraxella osloensis Morganella morganii Myroides odoratimimus Myroides odoratus Oligella ureolytica Oligella urethralis Pantoea agglomerans Parabacteroides distasonis Pasteurella multocida Pediococcus pentosaceus Peptoniphilus harei group Peptostreptococcus anaerobius Plesiomonas shigelloides Porphyromonas gingivalis Prevotella bivia Prevotella buccae Prevotella denticola Prevotella intermedia Prevotella melaninogenica Propionibacterium acnes Proteus mirabilis Proteus vulgaris group Providencia rettgeri Providencia stuartii Pseudomonas aeruginosa Pseudomonas fluorescens group Pseudomonas oryzihabitans Pseudomonas putida group Pseudomonas stutzeri Rhizobium radiobacter Rothia aeria Rothia dentocariosa Rothia mucilaginosa Salmonella sp Serratia liquefaciens Serratia marcescens Serratia plymuthica Serratia rubidaea Staphylococcus aureus Staphylococcus auricularis Staphylococcus capitis Staphylococcus caprae
5
Staphylococcus carnosus Staphylococcus cohnii Staphylococcus epidermidis Staphylococcus equorum Staphylococcus felis Staphylococcus haemolyticus Staphylococcus hominis Staphylococcus lugdunensis Staphylococcus pasteuri Staphylococcus pettenkoferi Staphylococcus pseudintermedius Staphylococcus saccharolyticus Staphylococcus saprophyticus Staphylococcus schleiferi Staphylococcus simulans Staphylococcus vitulinus Staphylococcus warneri Stenotrophomonas maltophilia Streptococcus agalactiae Streptococcus anginosus Streptococcus constellatus Streptococcus dysgalactiae Streptococcus gallolyticus Streptococcus gordonii Streptococcus intermedius Streptococcus lutetiensis Streptococcus mitis / oralis group Streptococcus mutans Streptococcus pneumoniae Streptococcus pyogenes Streptococcus salivarius Sutterella wadsworthensis Vibrio parahaemolyticus Vibrio vulnificus Yersinia enterocolitica Yersinia pseudotuberculosis
YEAST
Candida albicans Candida boidinii Candida dubliniensis Candida duobushaemulonii Candida famata Candida glabrata Candida guilliermondii Candida haemulonis Candida inconspicua Candida kefyr Candida krusei Candida lambica Candida lipolytica Candida lusitaniae Candida metapsilosis Candida norvegensis
6
Candida orthopsilosis Candida parapsilosis Candida pararugosa Candida pelliculosa Candida tropicalis Candida valida Cryptococcus gattii Cryptococcus neoformans var grubii Cryptococcus neoformans var neoformans Geotrichum candidum Geotrichum capitatum Kloeckera apiculata Pichia ohmeri Saccharomyces cerevisiae Trichosporon asahii
Type of Use (Select one or both, as applicable)
Prescription Use (Part 21 CFR 801 Subpart D)
| Over-The-Counter Use (21 CFR 801 Subpart C)
CONTINUE ON A SEPARATE PAGE IF NEEDED.
This section applies only to requirements of the Paperwork Reduction Act of 1995.
DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.
The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:
Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov
"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."
7
Image /page/7/Picture/0 description: The image shows the logo for Bruker. The word "BRUKER" is written in a bold, sans-serif font. Above and below the word are blue lines that form a circular shape, with a blue dot at each end of the lines. The logo is simple and modern.
510(k) SUMMARY
Date of Summary: | March 27, 2015 |
---|---|
Product Name | MBT-CA System |
Sponsor | Bruker Daltonics, Inc. |
40 Manning Road, | |
Billerica, MA 01821 | |
Correspondent | Bruker Daltonik GmbH |
Markus Kostrzewa, Vice President Clinical Mass Spectrometry R&D | |
Fahrenheitstrasse 4 | |
Bremen, 28359 | |
Phone: +49 (0)421-2205 1258Fax: +49 (0)421-2205 205 | |
Email: Markus.Kostrzewa@bruker.com | |
Device Identification | |
Trade or Proprietary Name: | MALDI Biotyper CA System |
Common or Usual Name: | System, mass spectrometry, maldi tof, microorganism identification, |
cultured isolates | |
Product Code: | DEV |
Product Code: | PEX |
---|---|
Regulation Section: | 21 CFR 866.3361 |
Device Class: | Class II |
Panel: | Microbiology |
8
Image /page/8/Picture/0 description: The image shows the logo for Bruker. The logo consists of the word "BRUKER" in bold, black letters. Above the word is a blue atom symbol, which is a common symbol used to represent science and technology. The atom symbol has three orbits with two dots on each orbit.
Substantial Equivalency
The Bruker Daltonics, Inc. MBT-CA System is substantially equivalent to the MS (K124067) and the Bruker Datonics, Inc. MBT-CA System (K13083). Table 1 compares the characteristics of the MBT-CA System (New Device) and the Vitek MS (Predicate Device).
Table 1. Substantial Equivalency Table
Similarities | |||
---|---|---|---|
NEW DEVICE | PRIMARY PREDICATE DEVICE | PREDICATE DEVICE | |
Characteristic | Bruker Daltonics, Inc. MBT-CA System | Vitek® MS | Bruker Daltonics, Inc. MBT-CA |
(TBD) | (K124067) | System (K130831) | |
Product Codes | PEX | PEX | PEX |
Intended use | The Bruker Daltonics, Inc. MALDI Biotyper CA System is a mass | ||
spectrometer system using matrix-assisted laser | |||
desorption/ionization - time-of-flight (MALDI-TOF) for the | |||
identification of microorganisms cultured from human | |||
specimens. | |||
The MALDI Biotyper CA System is a qualitative in vitro | |||
diagnostic device indicated for use in conjunction with other | |||
clinical and laboratory findings to aid in the diagnosis of | |||
bacterial and yeast infections. | The Vitek® MS is a mass spectrometer system | ||
using matrix-assisted laser | |||
desorption/ionization-time-of- flight (MALDI- | |||
TOF) for the identification of microorganisms | |||
cultured from human specimen. | |||
The VITEK MS is a qualitative in vitro diagnostic | |||
device indicated for use in conjunction with | |||
other clinical and laboratory findings to aid in | |||
the diagnosis of bacterial and yeast infections. | See "Differences" | ||
Sample type | Isolated colony from any patient sample source. | ||
Acceptable media: | |||
• Columbia blood agar with 5% sheep blood | |||
• Trypticase soy agar with 5% sheep Blood | |||
• Chocolate agar | |||
• MacConkey Agar | |||
• Columbia CNA agar with 5% sheep blood | |||
• Brucella Agar with 5% horse blood | |||
• CDC anaerobe Agar with 5% sheep blood | |||
• CDC anaerobe 5% sheep blood Agar with phenylethyl alcohol | |||
• CDC anaerobe laked sheep blood Agar with kanamycin and | |||
vancomycin | |||
• Bacteroides bile esculin Agar with amikacin | |||
• Clostridium difficile Agar with 7% sheep blood | |||
• Sabouraud-Dextrose Agar | |||
• Brain Heart Infusion Agar | |||
• Campylobacter Agar with 5 Antimicrobics and 10% Sheep | |||
Blood | |||
• Bordet Gengou Agar with 15% sheep blood | Isolated colony from any patient sample | ||
source. | |||
Acceptable media: | |||
• Columbia blood agar with 5% sheep blood | |||
• Trypitcase soy agar with 5% sheep Blood | |||
• Chocolate polyvitex agar | |||
• Campylosel agar | |||
• MacConkey Agar | |||
• Modified Sabouraud dextrose Agar | |||
• ChromID CPS | Isolated colony from any patient sample | ||
source. | |||
Acceptable media: | |||
• Columbia blood agar with 5% sheep | |||
blood | |||
• Trypticase soy agar with 5% sheep | |||
Blood | |||
• Chocolate agar | |||
• MacConkey Agar | |||
Type of Test | Automated Mass Spectrometry System | Automated Mass Spectrometry System | Automated Mass Spectrometry System |
Similarities | |||
Characteristic | NEW DEVICE | ||
Bruker Daltonics, Inc. MBT-CA System | |||
(TBD) | PRIMARY PREDICATE DEVICE | ||
Vitek® MS | |||
(K124067) | PREDICATE DEVICE | ||
Bruker Daltonics, Inc. MBT-CA | |||
System (K130831) | |||
Matrix | α-Cyano-4-hydroxycinnamic acid | α-Cyano-4-hydroxycinnamic acid | α-Cyano-4-hydroxycinnamic acid |
Method of | |||
Testing | Bacteria & Yeast: Direct testing | ||
If after initial analysis the log(score) is reported at in vitro | |||
diagnostic device indicated for use in conjunction with | |||
other clinical and laboratory findings to aid in the | |||
diagnosis of bacterial and yeast infections. | See "Similarities" | The Bruker Daltonics, Inc. MALDI Biotyper CA | |
System is a qualitative in vitro diagnostic mass | |||
spectrometer system for the identification of Gram- | |||
negative bacterial colonies cultured from human | |||
specimens using matrix-assisted laser | |||
desorption/ionization - time-of-flight (MALDI-TOF) | |||
mass spectrometry technology. |
The MALDI Biotyper CA System is indicated for use
in conjunction with other clinical and laboratory
findings to aid in the diagnosis of Gram-negative
bacterial infections. |
These differences do not affect substantial equivalence of the MBT-CA System and MBT-CA System (K130831). All systems are mass spectrometers using matrix-assisted laser desorption – time-of-flight (MALDI-TOF) for the identification of microorganisms cultured from human specimens. The differences noted above do not impact the intended use and do not raise questions as to the safectiveness of the test (new) device.
12
Image /page/12/Picture/0 description: The image shows the Bruker logo. The logo consists of the word "BRUKER" in bold, sans-serif font, with a stylized graphic above it. The graphic features two intersecting, curved lines that form a circular shape, with small circles at the ends of the lines, resembling an atom or molecule. The logo is simple and modern, conveying a sense of scientific precision and innovation.
Intended Use
The Bruker Daltonics, Inc. MALDI Biotyper CA System is a mass spectrometer system using matrix-assisted laser desorption/ionization – time-of-flight (MALDI-TOF) for the identification of microorganisms cultured from human specimens.
The MALDI Biotyper CA System is a qualitative in vitro diagnostic device indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial and yeast infections.
The following organisms are claimed:
Bacteria:
Achromobacter xylosoxidans | Cupriavidus pauculus group | Propionibacterium acnes | |
---|---|---|---|
Acinetobacter haemolyticus | Delftia acidovorans group | Proteus mirabilis | |
Acinetobacter johnsonii | Dermacoccus nishinomiyaensis | Proteus vulgaris group | |
Acinetobacter junii | Edwardsiella tarda | Providencia rettgeri | |
Acinetobacter lwoffii | Eikenella corrodens | Providencia stuartii | |
Acinetobacter radioresistens | Elizabethkingia meningoseptica group | Pseudomonas aeruginosa | |
Acinetobacter ursingii | Enterobacter aerogenes | Pseudomonas fluorescens group | |
Acinetobacter baumannii complex [4] | Enterobacter amnigenus | Pseudomonas oryzihabitans | |
Actinomyces meyeri | Enterobacter cloacae complex | Pseudomonas putida group | |
Actinomyces neuii | Enterococcus casseliflavus | Pseudomonas stutzeri | |
Actinomyces odontolyticus | Enterococcus faecalis | Rhizobium radiobacter | |
Actinomyces oris | Enterococcus faecium | Rothia aeria | |
Aerococcus urinae | Enterococcus gallinarum | Rothia dentocariosa | |
Aerococcus viridans | Enterococcus hirae | Rothia mucilaginosa | |
Aeromonas salmonicida | Enterococcus avium group | Salmonella sp | |
Aeromonas sp[7] | Escherichia coli | Serratia liquefaciens | |
Alcaligenes faecalis | Finegoldia magna | Serratia marcescens | |
Anaerococcus vaginalis | Fusobacterium canifelinum | Serratia plymuthica | |
Bacteroides fragilis | Fusobacterium necrophorum | Serratia rubidaea | |
Bacteroides uniformis | Fusobacterium nucleatum | Staphylococcus aureus | |
Bacteroides ovatus group | Gardnerella vaginalis | Staphylococcus auricularis | |
Bacteroides thetaiotaomicron group | Gemella haemolysans | Staphylococcus capitis | |
Bacteroides vulgatus group | Gemella sanguinis | Staphylococcus caprae | |
Bordetella group[3] | Granulicatella adiacens | Staphylococcus carnosus | |
Bordetella hinzii | Haemophilus haemolyticus | Staphylococcus cohnii | |
Brevibacterium casei | Haemophilus influenzae | Staphylococcus epidermidis | |
Brevundimonas diminuta group | Haemophilus parainfluenzae | Staphylococcus equorum | |
Burkholderia gladioli | Haemophilus parahaemolyticus group | Staphylococcus felis | |
Burkholderia multivorans | Hafnia alvei | Staphylococcus haemolyticus | |
Burkholderia cepacia complex [13] | Kingella kingae | Staphylococcus hominis | |
Campylobacter coli | Klebsiella pneumoniae | Staphylococcus lugdunensis | |
Campylobacter jejuni | Klebsiella oxytoca / | Staphylococcus pasteuri | |
Raoultella ornithinolytica | |||
Campylobacter ureolyticus | Kocuria kristinae | Staphylococcus pettenkoferi | |
Capnocytophaga ochracea | Kytococcus sedentarius | Staphylococcus pseudintermedius | |
Capnocytophaga sputigena | Lactococcus garvieae | Staphylococcus saccharolyticus |
13
Image /page/13/Picture/0 description: The image shows the logo for Bruker. The logo consists of the word "BRUKER" in a bold, sans-serif font, with a stylized atom symbol to the right. The atom symbol is made up of three overlapping circles, with a small dot in the center of each circle. The logo is simple and modern, and the atom symbol suggests that the company is involved in science or technology.
Chryseobacterium gleum | Lactococcus lactis | Staphylococcus saprophyticus |
---|---|---|
Chryseobacterium indologenes | Leuconostoc mesenteroides | Staphylococcus schleiferi |
Citrobacter amalonaticus complex | Macrococcus caseolyticus | Staphylococcus simulans |
Citrobacter koseri | Micrococcus luteus | Staphylococcus vitulinus |
Citrobacter freundii complex | Moraxella sg Branhamella catarrhalis | Staphylococcus warneri |
Clostridium difficile | Moraxella sg Moraxella | |
nonliquefaciens | Stenotrophomonas maltophilia | |
Clostridium perfringens | Moraxella sg Moraxella osloensis | Streptococcus agalactiae |
Corynebacterium amycolatum | Morganella morganii | Streptococcus anginosus |
Corynebacterium bovis | Myroides odoratimimus | Streptococcus constellatus |
Corynebacterium diphtheriae | Myroides odoratus | Streptococcus dysgalactiae |
Corynebacterium glucuronolyticum | Oligella ureolytica | Streptococcus gallolyticus |
Corynebacterium jeikeium | Oligella urethralis | Streptococcus gordonii |
Corynebacterium kroppenstedtii | Pantoea agglomerans | Streptococcus intermedius |
Corynebacterium macginleyi | Parabacteroides distasonis | Streptococcus lutetiensis |
Corynebacterium minutissimum | Pasteurella multocida | Streptococcus mutans |
Corynebacterium propinquum | Pediococcus pentosaceus | Streptococcus pneumoniae |
Corynebacterium | ||
pseudodiphtheriticum | Peptoniphilus harei group | Streptococcus pyogenes |
Corynebacterium riegelii | Peptostreptococcus anaerobius | Streptococcus salivarius |
Corynebacterium tuberculostearicum | Plesiomonas shigelloides | Streptococcus mitis / oralis group |
Corynebacterium ulcerans | Porphyromonas gingivalis | Sutterella wadsworthensis |
Corynebacterium urealyticum | Prevotella bivia | Vibrio parahaemolyticus |
Corynebacterium xerosis | Prevotella buccae | Vibrio vulnificus |
Corynebacterium aurimucosum group | Prevotella denticola | Yersinia enterocolitica |
Corynebacterium striatum group | Prevotella intermedia | Yersinia pseudotuberculosis |
Cronobacter sakazakii group | Prevotella melaninogenica |
Yeast:
- Candida albicans Candida boidinii Candida dubliniensis Candida duobushaemulonii Candida glabrata Candida famata Candida guilliermondii Candida haemulonis Candida inconspicua Candida kefyr Candida krusei Candida lambica Candida lipolytica Candida lusitaniae Candida metapsilosis Candida norvegensis Candida orthopsilosis
- Candida parapsilosis Candida pararugosa Candida pelliculosa Candida tropicalis Candida valida Cryptococcus gattii Cryptococcus neoformans_var_grubii Cryptococcus neoformans var neoformans Geotrichum candidum Geotrichum capitatum Kloeckera apiculata Pichia ohmeri Saccharomyces cerevisiae Trichosporon asahii
14
Image /page/14/Picture/0 description: The image shows the logo for Bruker Corporation. The logo consists of the word "BRUKER" in bold, black letters. Above the word is a blue atom symbol with two electrons orbiting the nucleus. The atom symbol is stylized and has a modern look.
Methodology
Biochemical methods are currently the most commonly used methods for the identification of microorganisms. Organisms are tested against a range of reagents and organism identification is based on a microorganism's reaction to these reagents.
The MBT-CA System uses a different methodology for organism identification based on unique protein patterns of the microorganisms obtained from mass spectrometry. The test organism's spectrum (a pattern of mass peaks) is compared with a reference spectra library (database). Using biostatistical analysis, a probability ranking of the organism identification is generated. The probability ranking is represented as a log(score) between 0.00 and 3.00. Organism identification is reported with high confidence if the log(score) is ≥2.00. An organism identification is reported with low confidence if the log(score) is between 1.70 and