K Number
K141230
Device Name
DOSELAB PRO
Date Cleared
2014-08-27

(106 days)

Product Code
Regulation Number
892.5050
Reference & Predicate Devices
Predicate For
N/A
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

DoseLab Pro is quality assurance software intended to be used as part of a dosimetry verification system for linear accelerators. It can be used to import radiation-exposed images from scanned film, other measurement devices, and treatment planning systems to display differences between measured and calculated dose distributions.

Device Description

DoseLab Pro is a software-only device that uses image analysis to perform radiation oncology quality assurance (QA) as part of a dosimetry verification system. Images are useful in radiation oncology QA because they can be analyzed qualitatively by viewing them and quantitatively using mathematical routines on the data that composes them. A variety of data sets can be analyzed as images in DoseLab Pro. They include radiation dose distributions calculated by treatment planning systems, measured dose distributions from arrays (diode and ion chamber), and radiation-exposed film images.

DoseLab Pro uses numerous built-in image analysis routines that have been developed to perform the tests and meet the standards of the medical physics QA community. In particular, these tools were designed to specifically support completing dose comparisons. Dose comparisons are made between two, two-dimensional images containing radiation dose and spatial information. The first image is exported from the dose calculation of a patient-specific computed treatment plan from treatment planning software, while the second image is the measured dose from delivery of that plan captured by film or a measurement array. DoseLab Pro assists in aligning the images spatially before performing several different comparisons including Gamma analysis and normalization. DoseLab Pro additionally contains tools for image editing, film image import, and film calibration.

It is important to note that while DoseLab Pro operates in the field of radiation therapy, it is neither a radiation delivery device (e.q. a linear accelerator), nor is it a treatment planning system (TPS). DoseLab Pro is an analysis tool meant solely for quality assurance (QA) purposes when used by trained medical professionals. Being a software-only QA tool, DoseLab Pro never comes into contact with patients.

AI/ML Overview

The provided text is a 510(k) summary for the DoseLab Pro device, a quality assurance software for linear accelerators. It describes the device, its intended use, and claims substantial equivalence to a predicate device based on non-clinical performance data.

Here's a breakdown of the requested information based on the provided text:

1. Table of Acceptance Criteria and Reported Device Performance

The document does not explicitly present a table of acceptance criteria with corresponding performance metrics. Instead, it states:

CriterionReported Performance
Software functionality as per designAll tests passed without defect.
Expected behavior and outputConfirmed with known good data for inputs.
Device performs quality assurance comparisons between TPS images and measured dose imagesStated as the principal technological characteristic and demonstrated through testing.

2. Sample size used for the test set and the data provenance

The document does not specify a numerical sample size for the test set. It mentions "known good data for inputs," but the number of such data points is not quantified.

  • Sample size for test set: Not specified numerically.
  • Data provenance: Not explicitly stated, given it's referred to as "known good data for inputs." It implies synthesized or carefully selected internal data rather than real-world retrospective or prospective clinical data from a specific country. However, the context of "dosimetry verification system for linear accelerators" suggests that this "known good data" would be representative of radiation oncology QA scenarios.

3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts

The document does not mention the involvement of external experts to establish ground truth for the test set. The validation testing was performed "manually on the fully compiled software," implying an internal validation process based on the software's design specifications.

4. Adjudication method for the test set

No adjudication method (e.g., 2+1, 3+1) is mentioned in the document. The testing appears to be a direct comparison of software output against expected output based on "known good data," rather than a consensus-based ground truth establishment.

5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, and the effect size of how much human readers improve with AI vs without AI assistance

A multi-reader multi-case (MRMC) comparative effectiveness study was not done. DoseLab Pro is described as an image analysis tool for quality assurance, not a diagnostic or decision-support AI intended to be used with human readers to improve their performance in the traditional sense of medical image interpretation (e.g., radiologists interpreting images for disease detection). It performs calculations and displays differences between measured and calculated dose distributions, aiding medical physics QA, but not in a way that would typically involve an MRMC study comparing human reader performance.

6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done

Yes, a standalone performance evaluation was done. The "Non-Clinical Performance Data" section describes "Testing involved the use of known good data for inputs into DoseLab Pro and execution of tests designed to confirm expected behavior and expected output." This is a standalone evaluation of the software's functionality and accuracy in performing its intended QA tasks. The software itself is the "algorithm only" in this context, as it's not designed to be a human-in-the-loop diagnostic AI that modifies human reader performance. Its role is to independently carry out calculations and comparisons.

7. The type of ground truth used (expert consensus, pathology, outcomes data, etc.)

The type of ground truth used was based on "known good data" and "expected behavior and expected output." This implies a set of pre-defined, analytically derived, or previously validated outputs for specific inputs, against which the software's results were compared. It's an internal validation against known correct values, not an external ground truth like pathology or expert consensus on patient outcomes.

8. The sample size for the training set

The document does not mention a "training set." DoseLab Pro is described as software with "numerous built-in image analysis routines that have been developed to perform the tests and meet the standards of the medical physics QA community." This suggests that it is rule-based or algorithm-driven software, rather than a machine learning or AI model that requires a distinct training phase with a labeled dataset. Therefore, the concept of a "training set" as typically understood in machine learning is not applicable here.

9. How the ground truth for the training set was established

As there is no mention of a training set, the establishment of ground truth for a training set is not applicable. The software's design and built-in routines are based on established medical physics QA standards.

{0}------------------------------------------------

Image /page/0/Picture/1 description: The image shows the logo for the Department of Health & Human Services - USA. The logo features a stylized image of three human profiles facing right, stacked on top of each other. The profiles are rendered in black and have a flowing, abstract design. The text "DEPARTMENT OF HEALTH & HUMAN SERVICES - USA" is arranged in a circular pattern around the image.

August 27, 2014

Food and Drug Administration 10903 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002

Mobius Medical Systems, LP Stan Eshelman Chief Operating Officer 5012 Tamarisk St. BELLAIRE TX 77401-2826

Re: K141230 Trade/Device Name: DoseLab Pro Regulation Number: 21 CFR 892.5050 Regulation Name: Medical charged-particle radiation therapy system Regulatory Class: II Product Code: IYE Dated: July 24, 2014 Received: July 25, 2014

Dear Mr. Eshelman:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food. Drug. and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21. Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

{1}------------------------------------------------

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Division of Industry and Consumer Education at its toll-free number (800) 638 2041 or (301) 796-7100 or at its Internet address

http://www.fda.gov/MedicalDevices/Resourcesfor You/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to

http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Industry and Consumer Education at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address

http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours.

Michael O'Hara
for

Janine Morris Director Division of Radiological Health Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health

Enclosure

{2}------------------------------------------------

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

K141230

Device Name

DoseLab Pro

Indications for Use (Describe)

DoseLab Pro is quality assurance software intended to be used as part of a dosimetry verification system for linear accelerators. It can be used to import radiation-exposed images from scanned film, other measurement devices, and treatment to display differences between measured and calculated dose distributions.

Type of Use (Select one or both, as applicable)

X Prescription Use (Part 21 CFR 801 Subpart D)

| | Over-The-Counter Use (21 CFR 801 Subpart C)

PLEASE DO NOT WRITE BELOW THIS LINE – CONTINUE ON A SEPARATE PAGE IF NEEDED.

FOR FDA USE ONLY

Concurrence of Center for Devices and Radiological Health (CDRH) (Signature)

{3}------------------------------------------------

5 510(k) Summary

5.1 510(K) Owner

Mobius Medical Systems, LP 5012 Tamarisk St Bellaire, TX 77401 Tel: (888) 263-8541 Fax: (888) 263-8541

5.2 Contact Person

Stan Eshelman

5.3 Preparation Date

May 12, 2014

5.4 Trade Name

DoseLab Pro

5.5 Common Name

Dosimetry QA Software

5.6 CLASSIFICATION NAME

Accelerator, Linear, Medical 21 CFR 892.5050 Product Code - IYE

5.7 Predicate Devices

  • K935928 RIT 113 (Radiological Imaging Technology, Inc) .

5.8 Device Description

DoseLab Pro is a software-only device that uses image analysis to perform radiation oncology quality assurance (QA) as part of a dosimetry verification system. Images are useful in radiation oncology QA because they can be analyzed qualitatively by viewing them and quantitatively using mathematical routines on the data that composes them. A variety of data sets can be analyzed as images in DoseLab Pro. They include radiation dose distributions calculated by treatment planning systems, measured dose distributions from arrays (diode and ion chamber), and radiation-exposed film images.

DoseLab Pro uses numerous built-in image analysis routines that have been developed to perform the tests and meet the standards of the medical physics QA community. In particular, these tools were designed to specifically support completing dose

{4}------------------------------------------------

comparisons. Dose comparisons are made between two, two-dimensional images containing radiation dose and spatial information. The first image is exported from the dose calculation of a patient-specific computed treatment plan from treatment planning software, while the second image is the measured dose from delivery of that plan captured by film or a measurement array. DoseLab Pro assists in aligning the images spatially before performing several different comparisons including Gamma analysis and normalization. DoseLab Pro additionally contains tools for image editing, film image import, and film calibration.

It is important to note that while DoseLab Pro operates in the field of radiation therapy, it is neither a radiation delivery device (e.q. a linear accelerator), nor is it a treatment planning system (TPS). DoseLab Pro is an analysis tool meant solely for quality assurance (QA) purposes when used by trained medical professionals. Being a software-only QA tool, DoseLab Pro never comes into contact with patients.

5.9 Intended Use

DoseLab Pro is quality assurance software intended to be used as part of a dosimetry verification system for linear accelerators. It can be used to import radiation-exposed images from scanned film, other measurement devices, and treatment planning systems to display differences between measured and calculated dose distributions.

5.10 TECHNOLOGICAL CHARACTERISTICS SUMMARY

The principle technological characteristic of DoseLab and its predicate device is to perform quality assurance comparisons between images exported from a radiation treatment planning system (TPS) and images from measurements taken during delivery by the radiation delivery system (e.g. linear accelerator). Detailed technological characteristics and indications for use presented within the full set of submitted documentation for this 510(k) application support the claim that DoseLab Pro is substantially equivalent to the predicate device.

5.11 Non-Clinical Performance Data

Non-clinical performance testing was performed on DoseLab Pro as part of its validation. The software Test Plan, Testing Final Report, and Validation Test Records are all submitted as separate appendices to this 510(k) application. Testing involved the use of known good data for inputs into DoseLab Pro and execution of tests designed to confirm expected behavior and expected output. Validation testing was performed manually on the fully compiled software in conditions comparable to its intended clinical environment. All tests passed without defect.

5.12Conclusions

As a result of the testing done and the comparisons made between technological characteristics, we conclude DoseLab Pro is substantially equivalent to the predicate device.

§ 892.5050 Medical charged-particle radiation therapy system.

(a)
Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons) intended for use in radiation therapy. This generic type of device may include signal analysis and display equipment, patient and equipment supports, treatment planning computer programs, component parts, and accessories.(b)
Classification. Class II. When intended for use as a quality control system, the film dosimetry system (film scanning system) included as an accessory to the device described in paragraph (a) of this section, is exempt from the premarket notification procedures in subpart E of part 807 of this chapter subject to the limitations in § 892.9.