(39 days)
The Prodesse® ProParaflu®+ Assay is a multiplex Real-Time PCR (RT-PCR) in vitro diagnostic test for the qualitative detection and discrimination of Parainfluenza 1 Virus, Parainfluenza 2 Virus and Parainfluenza 3 Virus (HPIV-1. HPIV-2 and HPIV-3) nucleic acids isolated and purified from nasopharvngeal (NP) swab specimens obtained from individuals exhibiting signs and symptoms of respiratory tract infections. This Assay targets the conserved regions of the Hemagglutinin-Neuraminidase (HN) gene of HPIV-1, HPIV-3, respectively. The detection and discrimination of HPIV-1, HPIV-2 and HPIV-3 nucleic acids from symptomatic patients aid in the diagnosis of human respiratory tract parainfluenza infections if used in conjunction with other clinical and laboratory findings. This test is not intended to detect Parainfluenza 4a or Parainfluenza 4b Viruses.
Negative test results are presumptive and should be confirmed by cell culture. Negative results do not preclude Parainfluenza 1, 2 or 3 virus infections and should not be used as the sole basis for treatment or other management decisions.
The ProParaflu+ Assay enables detection and differentiation of Parainfluenza 1 Virus. Parainfluenza 2 Virus, Parainfluenza 3 Virus and internal control nucleic acid. Nasopharyngeal swab specimens are collected from patients with signs and symptoms of a respiratory infection using a polyester, rayon or nylon tipped swab and placed into viral transport medium.
A Universal Internal Control (UIC) is added to each sample prior to nucleic acid isolation to monitor for inhibitors present in the specimens. The isolation and purification of the nucleic acids is performed using either a MagNA Pure LC Instrument (Roche) and the MagNA Pure Total Nucleic Acid Isolation Kit (Roche) or a NucliSENS® easyMAG™ System (bioMérieux) and the Automated Magnetic Extraction Reagents (bioMérieux).
The purified nucleic acids are added to ProParaflu+ Supermix along with enzymes included in the ProParaflu+ Assay Kit. The ProParaflu+ Supermix contains oligonucleotide primers and target-specific oligonucleotide probes. The primers are complementary to highly conserved regions of genetic sequences for these respiratory viruses. The probes are dual-labeled with a reporter dye attached to the 5'-end and a quencher dye attached to the 3'-end.
Reverse transcription of the RNA in the sample into complementary DNA (cDNA) and subsequent amplification of DNA is performed in a Cepheid SmartCycler® II instrument. In this process, the probe anneals specifically to the template followed by primer extension and amplification. The ProParaflu+ Assay is based on Taqman chemistry, which utilizes the 5 - 3 ' exonuclease activity of the Taq polymerase to cleave the probe thus separating the reporter dye from the quencher. This generates an increase in fluorescent signal upon excitation from a light source. With each cycle, additional reporter dve molecules are cleaved from their respective probes, further increasing fluorescent signal. The amount of fluorescence at any given cycle is dependent on the amount of amplification products present at that time. Fluorescent intensity is monitored during each PCR cycle by the SmartCycler II instrument.
The provided document describes a special 510(k) submission for the Gen-Probe Prodesse, Inc. Prodesse® ProParaflu®+ Assay (K132238). This submission focuses on modifications to an existing device (predicate device K091053, ProParaflu 101+ Assay) rather than a completely new device. Therefore, the details provided about acceptance criteria and study designs are predominantly related to demonstrating substantially equivalent performance with the modifications, rather than establishing initial performance for a novel diagnostic.
Here's an analysis of the provided information:
1. Table of Acceptance Criteria and Reported Device Performance
The document doesn't explicitly state numerical "acceptance criteria" in the format of a threshold to be met. Instead, it describes the objective of the verification/validation studies for the modified device: to ensure that the modifications did not negatively impact the device's ability to detect target organisms at the limit of detection or change its clinical performance. The reported performance is framed as meeting these objectives and demonstrating substantial equivalence to the previous device.
| Acceptance Criterion Objective (Implicit) | Reported Device Performance |
|---|---|
| The Universal Internal Control (UIC) should not affect the ability of the ProParaflu+ Assay to detect target organisms at the limit of detection. | "The UIC did not affect the ability of the ProParaflu+ Assay to detect target organisms at the limit of detection as evinced by the results of Analytical Sensitivity, IC Interference, Extractor Equivalency, and Sample Stability studies." |
| The incorporation of the UIC should not change the clinical performance of the ProParaflu+ Assay. | "Additionally, the results of a retrospective clinical comparison study demonstrated the modified ProParaflu+ Assay with UIC continues to meet the performance claims for the current ProParaflu+ Assay." (Implicitly, the clinical performance did not change negatively). |
| The positive control, provided "at use" concentration, should continue to monitor for global assay failures and maintain stability. | "A Positive Control Effectiveness Study demonstrated the positive control's continued ability to monitor for global assay failures at the increased testing concentration." (Implicitly, the performance of the positive control was maintained). |
| All clinical and analytical performance/functionality should remain unchanged from the previous device. (Overall objective of verification/validation studies for modifications) | "Verification and validation studies performed demonstrated that all clinical and analytical performance/functionality remains unchanged from the previous device." (This is a summary statement of the overall outcome, not a specific performance metric). |
2. Sample Size Used for the Test Set and Data Provenance
- Sample Size for Test Set: The document mentions a "retrospective clinical comparison study" for the UIC modification but does not specify the sample size for this study or any other test sets.
- Data Provenance: The document states "nasopharyngeal (NP) swab specimens obtained from individuals exhibiting signs and symptoms of respiratory tract infections." The country of origin is not specified but is implied to be within the scope of where Gen-Probe Prodesse, Inc. operates (Waukesha, WI, USA, suggests data from the USA). The clinical comparison study is explicitly stated to be retrospective.
3. Number of Experts Used to Establish Ground Truth for the Test Set and Qualifications
This information is not provided in the document. As this is an in vitro diagnostic device, the ground truth is typically established by other laboratory methods rather than expert interpretation of images or other subjective data.
4. Adjudication Method for the Test Set
This information is not provided in the document. Given that it's an in vitro diagnostic test, the concept of expert adjudication in the same way it applies to image analysis might not be directly relevant. The "ground truth" would likely be determined by a different gold standard assay or cell culture, not a consensus of human reviewers of the device's output.
5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study
An MRMC study is not applicable and was not done. This device is an in vitro diagnostic for detecting viral nucleic acids, not an imaging device requiring human reader interpretation.
6. Standalone Performance (Algorithm Only Without Human-in-the-Loop)
The device is an in vitro diagnostic Real-Time PCR assay. Its operation is inherently "standalone" in the sense that the assay itself generates a result (presence/absence of viral nucleic acid) based on the biochemical reaction and instrument detection. There isn't a "human-in-the-loop" component in the interpretation of the RT-PCR output itself, though a human performs the test and interprets the final qualitative result (positive/negative) from the instrument's readout. The performance studies (Analytical Sensitivity, IC Interference, Extractor Equivalency, Sample Stability, and the retrospective clinical comparison) demonstrate this standalone performance.
7. Type of Ground Truth Used
The document mentions that negative test results are presumptive and should be confirmed by cell culture. This indicates that cell culture is considered a gold standard or a primary method for confirming negative findings, and likely forms part of the "ground truth" for clinical evaluations. For positive results, the ground truth would typically be established by clinical diagnosis and/or comparison to a known highly sensitive and specific comparator assay or other reference methods in the clinical comparison study.
8. Sample Size for the Training Set
The document does not provide any information about a training set. As this is a molecular diagnostic assay using primers and probes targeting specific gene sequences, the "training" aspect is built into the assay design (selecting highly conserved regions) rather than a machine learning training paradigm with a specific dataset.
9. How the Ground Truth for the Training Set Was Established
Since there is no mention of a "training set" in the context of machine learning, this question is not applicable. The "ground truth" for the assay's design (e.g., confirming the suitability of the chosen gene targets and primer/probe sequences) would have been established through bioinformatics analysis and empirical testing with characterized viral isolates.
{0}------------------------------------------------
Gen-Probe Prodesse, Inc. Prodesse® ProParaflu®+ Assay Special 510(k) Submission Page 1 of 3 7/16/2013
510(k) SUMMARY
CONTACT
Emily Ziegler Scientist I Gen-Probe Prodesse, Inc. 20925 Crossroads Circle Waukesha, WI 53186
AUG 2 6 2013
NAME OF DEVICE
Trade Name: Regulation Number: Product Code: Classification Name: Prodesse® ProParaflu®+ Assay 21 CFR 866.3980 OOU, QOI Nucleic acid amplification assay for detection and differentiation of Parainfluenza 1, Parainfluenza 2, and Parainfluenza 3
PREDICATE DEVICE
K091053. ProParaflu 101+ Assay
INTENDED USE
The Prodesse® ProParaflu®+ Assay is a multiplex Real-Time PCR (RT-PCR) in vitro diagnostic test for the qualitative detection and discrimination of Parainfluenza 1 Virus, Parainfluenza 2 Virus and Parainfluenza 3 Virus (HPIV-1. HPIV-2 and HPIV-3) nucleic acids isolated and purified from nasopharvngeal (NP) swab specimens obtained from individuals exhibiting signs and symptoms of respiratory tract infections. This Assay targets the conserved regions of the Hemagglutinin-Neuraminidase (HN) gene of HPIV-1, HPIV-3, respectively. The detection and discrimination of HPIV-1, HPIV-2 and HPIV-3 nucleic acids from symptomatic patients aid in the diagnosis of human respiratory tract parainfluenza infections if used in conjunction with other clinical and laboratory findings. This test is not intended to detect Parainfluenza 4a or Parainfluenza 4b Viruses.
Negative test results are presumptive and should be confirmed by cell culture. Negative results do not preclude Parainfluenza 1, 2 or 3 virus infections and should not be used as the sole basis for treatment or other management decisions.
PRODUCT DESCRIPTION
The ProParaflu+ Assay enables detection and differentiation of Parainfluenza 1 Virus. Parainfluenza 2 Virus, Parainfluenza 3 Virus and internal control nucleic acid. Nasopharyngeal swab specimens are collected from patients with signs and symptoms of a respiratory infection using a polyester, rayon or nylon tipped swab and placed into viral transport medium.
A Universal Internal Control (UIC) is added to each sample prior to nucleic acid isolation to monitor for inhibitors present in the specimens. The isolation and purification of the nucleic acids is performed using either a MagNA Pure LC Instrument (Roche) and the MagNA Pure Total Nucleic Acid Isolation Kit (Roche) or a NucliSENS® easyMAG™ System (bioMérieux)
Confidential to Gen-Probe Prodesse, Inc.
{1}------------------------------------------------
and the Automated Magnetic Extraction Reagents (bioMérieux).
The purified nucleic acids are added to ProParaflu+ Supermix along with enzymes included in the ProParaflu+ Assay Kit. The ProParaflu+ Supermix contains oligonucleotide primers and target-specific oligonucleotide probes. The primers are complementary to highly conserved regions of genetic sequences for these respiratory viruses. The probes are dual-labeled with a reporter dye attached to the 5'-end and a quencher dye attached to the 3'-end (see table below).
| Analyte | Gene Targeted | ProbeFluorophore | AbsorbancePeak | EmissionPeak | InstrumentChannel |
|---|---|---|---|---|---|
| Parainfluenza 1 Virus | Hemagglutininneuraminidase | FAM | 495 nm | 520 nm | FAM |
| Parainfluenza 3 Virus | Hemagglutininneuraminidase | CAL FluorOrange 560 | 540 nm | 561 nm | TET |
| Parainfluenza 2 Virus | Hemagglutininneuraminidase | CAL Fluor Red610 | 595 nm | 615 nm | Texas Red |
| Universal InternalControl | N/A | Quasar 670 | 647 nm | 667 nm | UniversalInternalControl |
Reverse transcription of the RNA in the sample into complementary DNA (cDNA) and subsequent amplification of DNA is performed in a Cepheid SmartCycler® II instrument. In this process, the probe anneals specifically to the template followed by primer extension and amplification. The ProParaflu+ Assay is based on Taqman chemistry, which utilizes the 5 - 3 ' exonuclease activity of the Taq polymerase to cleave the probe thus separating the reporter dye from the quencher. This generates an increase in fluorescent signal upon excitation from a light source. With each cycle, additional reporter dve molecules are cleaved from their respective probes, further increasing fluorescent signal. The amount of fluorescence at any given cycle is dependent on the amount of amplification products present at that time. Fluorescent intensity is monitored during each PCR cycle by the SmartCycler II instrument.
DEVICE COMPARISON
The modified ProParaflu+ Assay differs from the current kit in the following ways:
- . Outsourcing of internal control stock manufacturing leading to a change in control vector:
- . Universal Internal Control. consisting of an RNA in vitro transcript and a DNA plasmid. incorporated into the kit;
- . The 1:10 dilution step of the positive control performed by customers has been removed:
The labeling was updated accordingly to incorporate the modifications listed above.
SUBSTANTIAL EQUIVALENCE
-
- The Intended Use and Warnings or Precautions of the modified device as described in the labeling have not changed.
-
- The modifications detailed in the table below have not had any effect or caused any changes to the fundamental scientific technology of the device.
| Company College of Concession Commens Commenss of Concession Commenss of Children Commens of Children Comments of the Art Children Comments of the Art Children Comments of thTHE FOR AND AND AND THE PERSONAL PROPERTY OF COLLECTION OF COLLECTION OF COLLECTION OF COLLECTION OF CLASS OF COLLECTION OF CLASS OF COLLECTION OF CLASS OF COLLECTION OF COLLModificationStation All Articles Area Arman Property of Armand Business of British Annual But All All Art American | and and the commended to the country of the first for the first forPotential Impact of ModificationAND AND Advertising Andrew Annel and American American American American American American American American American American American American American American American Am------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | and and the commend of the state of the commend from the country of the countComments of the local to be are the program and and theVerification/Validation Result |
|---|---|---|
| ANNUAL AND AND AND AND AND A BRANCH A BLOCK A ART A LA ACommended And ALL ALL ALL A |
Confidential to Gen-Probe Prodesse, Inc.
{2}------------------------------------------------
| Modification | Potential Impact of Modification | Verification/Validation Result |
|---|---|---|
| Outsourcing of internal controlleading to minor changes insequenceIncorporation of a UniversalInternal Control, containing bothRNA and DNA internal controlsequences. | Modification of the internal controlmay affect the ability of the device todetect the target organisms.Additionally, it may change theclinical performance of theProParaflu+ Assay. | The UIC did not affect the ability of theProParaflu+ Assay to detect targetorganisms at the limit of detection asevinced by the results of AnalyticalSensitivity, IC Interference, ExtractorEquivalency, and Sample Stabilitystudies. Additionally, the results of aretrospective clinical comparison studydemonstrated the modified ProParaflu+Assay with UIC continues to meet theperformance claims for the currentProParaflu+ Assay. |
| Positive control provided "at use"concentration, no dilution isnecessary. | Changes in the testing concentrationmay affect the performance of thepositive control in terms of stabilityor ability to detect global assayfailures. | A Positive Control Effectiveness Studydemonstrated the positive control'scontinued ability to monitor for globalassay failures at the increased testingconcentration. |
-
- Verification and validation studies performed demonstrated that all clinical and analytical performance/functionality remains unchanged from the previous device.
-
- The appropriate Design Control activities were performed;
- a. A Risk Analysis was performed and did not raise any new concerns of safety and efficacy associated with the modifications.
- b. A declaration of conformity with design controls has been submitted.
The modified ProParaflu+ Assay is substantially equivalent to the current legally marketed device, ProParaflu+ Assay.
{3}------------------------------------------------
Public Health Service
Food and Drug Adminstration 10903 New Hampshire Avenue Document Control Center - WO66-6609 Silver Spring, MI) 20003-0002
August, 26 2013
Emily Ziegler Scientist I Gen-Probe Prodesse. Inc. 20925 Crossroads Circle Waukesha. WI 53186
Re: K132238
Trade/Device Name: Prodesse ProParaflu"+ Assay Regulation Number: 21 CFR 866.3980 Regulation Name: Respiratory Virus Panel Multiplex Nucleic Acid Assay Regulatory Class: Class II Product Code: OOU. OOI Dated: July 16, 2013 Received: July 30. 2013
Dear Ms. Ziegler:
We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976. the enactment date of the Medical Device Amendments. or 10 devices that have been reclassified in accordance with the provisions of the Federal Food. Drug. and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration. Iisting of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH docs not evaluate information related to contract fiability warranties. We remind you, however, that device labeling must be truthful and not misleading.
If your device is classified (see above) into either class II (Special Controls) or class III (PMA). it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations. Title 21. Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.
Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements. including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set
{4}------------------------------------------------
Page 2 - Emily Ziegler
forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.
If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Division of Small Manufacturers. International and Consumer Assistance at its tollfree number (800) 638-2041 or (301) 796-7100 or at its Internet address
http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to
http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.hum for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.
You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/Resourcesfor You/Industry/default.htm.
Sincerely yours,
Sally A. Hojvat -S
Sally Hojvat, M.Sc., Ph.D. Director. Division of Microbiology Devices Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health
Enclosure
{5}------------------------------------------------
Gen-Probe Prodesse, Inc. Prodesse® ProParaflu®+ Assay Special 510(k) Submission
Indication for Use
510(k) Number (if known): K132238
Device Name: Prodesse® ProParaflu®+ Assay
Indication for Use:
The Prodesse ProParaflu®+ Assay is a multiplex Real-Time PCR (RT-PCR) in vitro diagnostic test for the qualitative detection and discrimination of Parainfluenza 1 Virus. Parainfluenza 2 Virus and Parainfluenza 3 Virus (HPIV-1, HPIV-2 and HPIV-3) nucleic acids isolated and purified from nasopharyngeal (NP) swab specimens obtained from individuals exhibiting signs and symptoms of respiratory tract infections. This Assay targets the conserved regions of the Hemagglutinin-Neuraminidase (HN) gene of HPIV-1, HPIV-2 and HPIV-3, respectively. The detection and discrimination of HPIV-1, HPIV-2 and HPIV-3 nucleic acids from symptomatic patients aid in the diagnosis of human respiratory tract parainfluenza infections if used in conjunction with other clinical and laboratory findings. This test is not intended to detect Parainfluenza 4a or Parainfluenza 4b Viruses.
Negative test results are presumptive and should be confirmed by cell culture. Negative results do not preclude Parainfluenza 1, 2 or 3 virus infections and should not be used as the sole basis for treatment or other management decisions.
Prescription Use ____X (21 CFR Part 801 Subpart D) And/Or
Over the Counter Use (21 CFR Part 801 Subpart C)
(PLEASE DO NOT WRITE BELOW THIS LINE; CONTINUE ON ANOTHER PAGE IF NEEDED)
Concurrence of Center for Devices and Radiological Health (CDRH)
Tamara V. Feldblyum -S 2013.08.26 15:25:13 -04'00'
§ 866.3980 Respiratory viral panel multiplex nucleic acid assay.
(a)
Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended to simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or viral culture. The detection and identification of a specific viral nucleic acid from individuals exhibiting signs and symptoms of respiratory infection aids in the diagnosis of respiratory viral infection when used in conjunction with other clinical and laboratory findings. The device is intended for detection and identification of a combination of the following viruses:(1) Influenza A and Influenza B;
(2) Influenza A subtype H1 and Influenza A subtype H3;
(3) Respiratory Syncytial Virus subtype A and Respiratory Syncytial Virus subtype B;
(4) Parainfluenza 1, Parainfluenza 2, and Parainfluenza 3 virus;
(5) Human Metapneumovirus;
(6) Rhinovirus; and
(7) Adenovirus.
(b)
Classification. Class II (special controls). The special controls are:(1) FDA's guidance document entitled “Class II Special Controls Guidance Document: Respiratory Viral Panel Multiplex Nucleic Acid Assay;”
(2) For a device that detects and identifies Human Metapneumovirus, FDA's guidance document entitled “Class II Special Controls Guidance Document: Testing for Human Metapneumovirus (hMPV) Using Nucleic Acid Assays;” and
(3) For a device that detects and differentiates Influenza A subtype H1 and subtype H3, FDA's guidance document entitled “Class II Special Controls Guidance Document: Testing for Detection and Differentiation of Influenza A Virus Subtypes Using Multiplex Nucleic Acid Assays.” See § 866.1(e) for the availability of these guidance documents.