(30 days)
The BIOLOX delta Ceramic Femoral Heads are modular components used in total hip arthroplasty and indicated for the following:
Patients suffering from severe hip pain and disability due to rheumatoid arthritis, osteoarthritis, traumatic arthritis, polyarthritis, collagen disorders, avascular necrosis of the femoral head, and nonunion of previous fractures of the femur; patients with congenital hip dysplasia, protrusio acetabuli, or slipped capital femoral epiphysis; patients suffering from disability due to previous fusion: patients with previously failed endoprostheses and/or total hip components in the operative extremity; and patients with acute neck fractures.
The BIOLOX delta Ceramic Femoral Heads are fabricated from an alumina matrix composite and are available in diameters of 28, 32, 36, and 40 mm with a range of offsets to accommodate various patient anatomies. They serve as an alternative to both metal and alumina ceramic femoral heads for use in total hip arthroplasty.
Here's an analysis of the provided text regarding the acceptance criteria and supporting study for the BIOLOX delta Ceramic Femoral Heads:
1. Table of Acceptance Criteria and Reported Device Performance:
The document describes the device, its intended use, and a comparison to a predicate device. It does not explicitly state numerical acceptance criteria in terms of performance metrics (e.g., specific fatigue limits, wear rates, a certain number of cycles successfully passed). Instead, the performance is assessed against the substantial equivalence to a predicate device.
Acceptance Criteria | Reported Device Performance |
---|---|
Substantial Equivalence to Predicate Device: The device must demonstrate substantial equivalence to previously cleared BIOLOX delta Ceramic Femoral Heads (K071535) and other compatible Zimmer stems (K123392, K071723). The proposed modification is limited to expanding the scope of compatible femoral stems, and the subject devices must have the same intended use and performance characteristics as their predicates. | Demonstrated Substantial Equivalence: Non-clinical testing, engineering, and risk analyses were performed. The FDA concurred with the determination of substantial equivalence. |
Material Equivalence: Sterilization using equivalent materials and processes as predicates. | Equivalent: Sterilization uses equivalent materials and processes as predicates. |
Performance Characteristics Equivalence: Same performance characteristics as their predicates, particularly regarding pull-off testing, range of motion analyses, and fatigue strength to ensure no new worst-case scenario. | Equivalent Performance: Non-clinical testing included pull-off testing and range of motion analyses. A fatigue strength analysis ensured no new worst-case compared to other legally marketed combinations. |
2. Sample Sizes and Data Provenance:
- Test Set Sample Size: Not specified. The document refers to "non-clinical testing" which implies mechanical and engineering tests, not patient data in the traditional sense of a "test set" for an AI or diagnostic device.
- Data Provenance: The "non-clinical testing" was likely conducted by Zimmer GmbH, which is located in Winterthur, Switzerland. However, the exact location of the testing facilities is not explicitly stated. The data is non-clinical/engineering (not patient data), so the concept of retrospective or prospective doesn't directly apply in the same way as clinical trials.
3. Number of Experts and Qualifications for Ground Truth:
- Number of Experts: Not applicable. For this type of device (femoral head prosthesis), "ground truth" is established through engineering principles, material science, and mechanical testing standards, rather than expert consensus on medical images or clinical diagnoses.
- Qualifications of Experts: Not specified, but implied to be engineers, material scientists, and regulatory specialists involved in medical device design, testing, and regulatory submissions.
4. Adjudication Method:
- Adjudication Method: Not applicable. This document describes a 510(k) submission for a medical device (a ceramic femoral head), not a study involving human readers or interpretation of results that would require an adjudication method like 2+1 or 3+1. The assessment is based on objective engineering test results and regulatory review.
5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study:
- MRMC Study: No. This is a physical orthopedic implant, not a diagnostic or AI-assisted device that would involve human readers interpreting cases.
6. Standalone (Algorithm Only) Performance Study:
- Standalone Study: No. There is no algorithm involved in this device. The performance is assessed through non-clinical (mechanical) testing of the physical implant.
7. Type of Ground Truth Used:
- Ground Truth: The "ground truth" in this context is established through engineering principles, material standards, mechanical testing results, and comparison to established performance characteristics of predicate devices. This includes:
- Results from pull-off testing.
- Results from range of motion analyses.
- Results from fatigue strength analysis.
- Adherence to material specifications (alumina matrix composite).
- Compliance with relevant ASTM or ISO standards for orthopedic implants (though not explicitly listed, this is inherent in regulatory submissions).
8. Sample Size for the Training Set:
- Training Set Sample Size: Not applicable. This is not an AI/machine learning device that uses a "training set." The development of the device relies on established engineering design principles, material science, and manufacturing processes, which are refined through iterative design and testing rather than a statistical training set.
9. How Ground Truth for Training Set was Established:
- Ground Truth for Training Set: Not applicable, as there is no training set in the context of an AI/ML model for this device. The "truth" for the device's design and manufacturing is derived from decades of knowledge in biomedical engineering, orthopedics, materials science, and testing standards for implantable medical devices.
§ 888.3353 Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis.
(a)
Identification. A hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis is a device intended to be implanted to replace a hip joint. This device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across-the-joint. The two-part femoral component consists of a femoral stem made of alloys to be fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The proximal end of the femoral stem is tapered with a surface that ensures positive locking with the spherical ceramic (aluminium oxide, A12 03 ) head of the femoral component. The acetabular component is made of ultra-high molecular weight polyethylene or ultra-high molecular weight polyethylene reinforced with nonporous metal alloys, and used with or without bone cement.(b)
Classification. Class II.