(118 days)
The Reverse Shoulder is indicated for use in patients with a grossly rotator cuff deficient shoulder joint with severe arthropathy or a previously failed joint replacement with a grossly rotator cuff deficient shoulder joint. The patient's joint must be anatomically and structurally suited to receive the selected implant(s), and a functional deltoid muscle is necessary to use the device. The glenoid baseplate is intended for cementless application with the addition of screws for fixation. The humeral stem is intended for cemented use only.
The Reverse Shoulder Prosthesis is a total shoulder prosthesis designed specifically for use in patients with non-functional rotator cuffs. The articulation of this design is "inverted" compared to traditional total shoulder prosthesis. Unlike traditional total shoulders, the Reverse Shoulder is designed so that the "ball" of the articulation fits into the glenoid baseplate, and the "cup" of the articulation fits into the humeral stem. The distal surface of the glenoid baseplate is porous coated with an incorporated 6.5 cancellous screw and is intended to be used with 4 peripheral screws (3.5 non-locking and/or 5.0mm locking and non-locking) for additional fixation.
I am sorry, but based on the provided text, there is no information available about acceptance criteria or a study proving that a device meets such criteria.
The document is a 510(k) premarket notification letter from the FDA regarding the "Encore Reverse Shoulder Prosthesis." It discusses the device's classification, indications for use, and a comparison to predicate devices, but it does not include details about:
- Specific acceptance criteria for the device's performance.
- A study conducted to demonstrate the device meets any performance criteria.
- Sample sizes, data provenance, expert ground truth, adjudication methods, MRMC studies, standalone performance, or training set details.
The document explicitly states under "Clinical Testing: None provided," indicating that clinical studies were not submitted as part of this 510(k) clearance process. The non-clinical testing mentioned (shear strength and tensile strength) is very limited and not described in enough detail to extract the requested information.
Therefore, I cannot populate the table or answer the specific questions based on the provided text.
§ 888.3660 Shoulder joint metal/polymer semi-constrained cemented prosthesis.
(a)
Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a shoulder joint. The device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across-the-joint. This generic type of device includes prostheses that have a humeral resurfacing component made of alloys, such as cobalt-chromium-molybdenum, and a glenoid resurfacing component made of ultra-high molecular weight polyethylene, and is limited to those prostheses intended for use with bone cement (§ 888.3027).(b)
Classification. Class II. The special controls for this device are:(1) FDA's:
(i) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical Devices—Part I: Evaluation and Testing,’ ”
(ii) “510(k) Sterility Review Guidance of 2/12/90 (K90-1),”
(iii) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone Cement,”
(iv) “Guidance Document for the Preparation of Premarket Notification (510(k)) Application for Orthopedic Devices,” and
(v) “Guidance Document for Testing Non-articulating, ‘Mechanically Locked’ Modular Implant Components,”
(2) International Organization for Standardization's (ISO):
(i) ISO 5832-3:1996 “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-aluminum 4-vandium Alloy,”
(ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-chromium-molybdenum casting alloy,”
(iii) ISO 5832-12:1996 “Implants for Surgery—Metallic Materials—Part 12: Wrought Cobalt-chromium-molybdenum alloy,”
(iv) ISO 5833:1992 “Implants for Surgery—Acrylic Resin Cements,”
(v) ISO 5834-2:1998 “Implants for Surgery—Ultra-high Molecular Weight Polyethylene—Part 2: Moulded Forms,”
(vi) ISO 6018:1987 “Orthopaedic Implants—General Requirements for Marking, Packaging, and Labeling,” and
(vii) ISO 9001:1994 “Quality Systems—Model for Quality Assurance in Design/Development, Production, Installation, and Servicing,” and
(3) American Society for Testing and Materials':
(i) F 75-92 “Specification for Cast Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implant Material,”
(ii) F 648-98 “Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants,”
(iii) F 799-96 “Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Forgings for Surgical Implants,”
(iv) F 1044-95 “Test Method for Shear Testing of Porous Metal Coatings,”
(v) F 1108-97 “Specification for Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,”
(vi) F 1147-95 “Test Method for Tension Testing of Porous Metal,”
(vii) F 1378-97 “Standard Specification for Shoulder Prosthesis,” and
(viii) F 1537-94 “Specification for Wrought Cobalt-28 Chromium-6 Molybdenum Alloy for Surgical Implants.”