K Number
K092076
Manufacturer
Date Cleared
2010-04-02

(267 days)

Product Code
Regulation Number
888.3070
Panel
OR
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The AEGIS and AEGIS II Spinal Systems are intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudarthrosis).

When used as an anterior screw fixation system, The AEGIS I and AEGIS II Spinal Systems are indicated for patients with deqenerative disc disease which is defined as back pain of the discogenic origin with degeneration of the disc confirmed by history and radiographic studies, Spondylolisthesis, fracture, spinal stenosis, spinal deformities such as scoliosis, lordosis, turnor, pseudoarthrosis, or revision of failed fusion attempts.

Device Description

The AEGIS® Pedicle Screw System is comprised of pedicle screw with diameters from 4.5mm to 8.5mm with increments of 1mm and length ranging from 20mm to 55 mm with increments of 5mm, a sleeve of standard diameter of 14 mm, and a set screw of M10XP1.0 & rods with standard diameter of 6 mm. All the components are manufactured from medical grade titanium alloy (Ti6Al4V-Eli).

The mono axial pedicle screw is used as an adjunct to spinal fusion surgery, provides a means of gripping a spinal segment. The screws themselves do not fixate the spinal segment, but act as firm anchor points that can then be connected with a rod. The screws are placed at two or three consecutive spine segments (e.g. lumbar segment 4 and 5) and then a short rod is used to connect the screws. This construct prevents motion at the segments that are being fused.

The Corentec® AEGIS II® Spinal system consists of various Pedicle Screws (mono / poly) with standard and guided type designs, Rod and Rod Link with a set screw, the assembly of which is intended to provide temporary stabilization following surgery to fuse the spine. This system is designed on the basis of long standing spinal technology which is already in the market for more than few decades.

AI/ML Overview

The provided text describes mechanical performance testing for the AEGIS & AEGIS II Spinal Systems. This is not a study involving AI, human readers, or image analysis, but rather physical stress tests on the device itself. Therefore, many of the requested categories are not applicable.

Here's the information that can be extracted from the provided text:

1. Table of Acceptance Criteria and Reported Device Performance

Acceptance Criteria (Test Method)Reported Device Performance
Static test (ASTM F1717-04): TensionDemonstrated equivalence to legally marketed predicate devices.
Static test (ASTM F1717-04): CompressionDemonstrated equivalence to legally marketed predicate devices.
Static test (ASTM F1717-04): TorsionDemonstrated equivalence to legally marketed predicate devices.
Dynamic test (ASTM F1717-04): FatigueDemonstrated equivalence to legally marketed predicate devices.
Axial pull-out strength test (ASTM 543-07)Demonstrated equivalence to legally marketed predicate devices.
Axial Gripping Capacity test (ASTM F1798-97)Demonstrated equivalence to legally marketed predicate devices.

2. Sample size used for the test set and the data provenance

The document does not specify the exact sample size for each mechanical test. The "data provenance" in this context refers to the manufacturing and testing of the physical device components. The tests were performed on the AEGIS and AEGIS II Spinal Systems themselves. The country of origin for the submitter is Korea. The tests are prospective in the sense that they are conducted on newly manufactured devices to ensure they meet standards.

3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts

Not applicable. This was mechanical testing of a medical device, not a human reader study or clinical evaluation requiring expert interpretation of data. The ground truth refers to the physical properties and performance of the device under stress, as measured by standard engineering tests.

4. Adjudication method for the test set

Not applicable. This was mechanical testing against established ASTM standards, not a diagnostic or interpretive study requiring adjudication of human readings.

5. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance

Not applicable. This was a mechanical performance study of a spinal implant system, not a study involving human readers or AI assistance.

6. If a standalone (i.e. algorithm only without human-in-the-loop performance) was done

Not applicable. This was mechanical testing of a physical medical device, not an algorithm.

7. The type of ground truth used

The ground truth used was the performance of the device under specific mechanical stress tests, compared against the performance of "legally marketed predicate devices" as defined by established ASTM (American Society for Testing and Materials) standards (F1717-04, 543-07, F1798-97).

8. The sample size for the training set

Not applicable. This was not a machine learning study with a training set.

9. How the ground truth for the training set was established

Not applicable. There was no training set.

§ 888.3070 Thoracolumbosacral pedicle screw system.

(a)
Identification. (1) Rigid pedicle screw systems are comprised of multiple components, made from a variety of materials that allow the surgeon to build an implant system to fit the patient's anatomical and physiological requirements. Such a spinal implant assembly consists of a combination of screws, longitudinal members (e.g., plates, rods including dual diameter rods, plate/rod combinations), transverse or cross connectors, and interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors).(2) Semi-rigid systems are defined as systems that contain one or more of the following features (including but not limited to): Non-uniform longitudinal elements, or features that allow more motion or flexibility compared to rigid systems.
(b)
Classification. (1) Class II (special controls), when intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudarthrosis). These pedicle screw spinal systems must comply with the following special controls:(i) Compliance with material standards;
(ii) Compliance with mechanical testing standards;
(iii) Compliance with biocompatibility standards; and
(iv) Labeling that contains these two statements in addition to other appropriate labeling information:
“Warning: The safety and effectiveness of pedicle screw spinal systems have been established only for spinal conditions with significant mechanical instability or deformity requiring fusion with instrumentation. These conditions are significant mechanical instability or deformity of the thoracic, lumbar, and sacral spine secondary to severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra, degenerative spondylolisthesis with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal tumor, and failed previous fusion (pseudarthrosis). The safety and effectiveness of these devices for any other conditions are unknown.”
“Precaution: The implantation of pedicle screw spinal systems should be performed only by experienced spinal surgeons with specific training in the use of this pedicle screw spinal system because this is a technically demanding procedure presenting a risk of serious injury to the patient.”
(2) Class II (special controls), when a rigid pedicle screw system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion in the treatment of degenerative disc disease and spondylolisthesis other than either severe spondylolisthesis (grades 3 and 4) at L5-S1 or degenerative spondylolisthesis with objective evidence of neurologic impairment. These pedicle screw systems must comply with the following special controls:
(i) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(ii) Non-clinical performance testing must demonstrate the mechanical function and durability of the implant.
(iii) Device components must be demonstrated to be biocompatible.
(iv) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(v) Labeling must include the following:
(A) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(B) Intended use and indications for use, including levels of fixation;
(C) Identification of magnetic resonance (MR) compatibility status;
(D) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user; and
(E) Detailed instructions of each surgical step, including device removal.
(3) Class II (special controls), when a semi-rigid system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion for any indication. In addition to complying with the special controls in paragraphs (b)(2)(i) through (v) of this section, these pedicle screw systems must comply with the following special controls:
(i) Demonstration that clinical performance characteristics of the device support the intended use of the product, including assessment of fusion compared to a clinically acceptable fusion rate.
(ii) Semi-rigid systems marketed prior to the effective date of this reclassification must submit an amendment to their previously cleared premarket notification (510(k)) demonstrating compliance with the special controls in paragraphs (b)(2)(i) through (v) and paragraph (b)(3)(i) of this section.