(54 days)
Cortical Screws are intended for fixation of fractures, osteotomies and nonunions of the clavicle, scapula, olecranon, humerus, radius, ulna, pelvis, tibia, calcaneous, femur and fibula.
Large Cannulated Screws (4.5mm diameter and larger) are intended for fracture fixation of large bones and large bone fragments. Diameters 6.5mm and larger are intended for large bones and large bone fragments such as femoral neck fractures; slipped capital femoral epiphyses; tibial plateau fractures; ankle arthrodeses; pediatric femoral neck fractures; intercondylar femur fractures; and subtalar arthrodeses.
Small Cannulated Screws (4.0mm diameter and smaller) are intended for fixation of fractures and non-unions of small bones and small bone arthrodeses. Examples include scaphoid and other carpal fractures, metacarpal and phalangeal fusions, osteotomies, and bunionectomies.
Cannulated screws are machined, metallic screws with a cannulation that are self drilling and self tapping, which can be guided into position by a guide wire.
Cortical and cancellous screws are machined, metallic screws and are self tapping.
All screws utilize a hex shaped recess that accepts a standard hex drive. Each type is offered in a variety of diameters and lengths, as well as short, medium, and fully threaded options.
Materials: The devices are manufactured from 316L Stainless Steel which meets ASTM F138 standards.
Function: Bone screws functions are to provide immediate stability and temporary fixation during the natural healing process.
The provided text is a 510(k) premarket notification for OrthoPediatrics Bone Screws. It primarily focuses on demonstrating substantial equivalence to previously marketed predicate devices rather than presenting a study against specific acceptance criteria for the new device's performance.
Therefore, the document does not contain the information requested regarding acceptance criteria and a study that proves the device meets those criteria.
Key reasons for this include:
- 510(k) Premarket Notification Focus: A 510(k) is a premarket submission made to FDA to demonstrate that the device to be marketed is at least as safe and effective as a legally marketed device (predicate device) and does not require premarket approval (PMA). This is typically achieved by demonstrating "substantial equivalence," not by conducting new clinical studies or setting and meeting new performance acceptance criteria for the device itself.
- Lack of Performance Data: The document describes the device, its materials, function, and indications for use. It lists predicate devices. However, there is no mention of specific performance metrics (e.g., strength, durability, fatigue life, accuracy) for the OrthoPediatrics Bone Screws, nor any study data (sample sizes, ground truth, expert opinions) that would demonstrate the device meets such criteria.
- No Mention of AI/Algorithm: The context of "AI," "test set," "training set," "experts," "adjudication," "MRMC," and "standalone algorithm performance" strongly suggests a request related to an AI/Machine Learning device. The OrthoPediatrics Bone Screws are described as machined, metallic screws, which are physical hardware devices, not software or AI-driven systems.
In summary, this document is for a medical device (bone screws) seeking market clearance through substantial equivalence, and as such, it does not include performance studies with acceptance criteria in the manner described for software or AI-based diagnostic/assistive devices.
§ 888.3040 Smooth or threaded metallic bone fixation fastener.
(a)
Identification. A smooth or threaded metallic bone fixation fastener is a device intended to be implanted that consists of a stiff wire segment or rod made of alloys, such as cobalt-chromium-molybdenum and stainless steel, and that may be smooth on the outside, fully or partially threaded, straight or U-shaped; and may be either blunt pointed, sharp pointed, or have a formed, slotted head on the end. It may be used for fixation of bone fractures, for bone reconstructions, as a guide pin for insertion of other implants, or it may be implanted through the skin so that a pulling force (traction) may be applied to the skeletal system.(b)
Classification. Class II.