(311 days)
No
The summary describes a mechanical prosthetic device for shoulder replacement and does not mention any software, algorithms, or data processing that would indicate the use of AI or ML.
Yes.
The device is indicated for use as a replacement for deficient humeral heads due to conditions like osteoarthritis or traumatic arthritis, aiming to increase mobility, stability, and relieve pain, which aligns with the definition of a therapeutic device.
No
Explanation: This device is a prosthesis (Tornier Pyrocarbon Humeral Head) designed to replace deficient humeral heads, not to diagnose medical conditions. Its purpose is treatment, not diagnosis.
No
The device description clearly states it is comprised of physical components: a pyrolytic carbon articulating surface and a cobalt chromium alloy double taper neck, intended for surgical implantation.
Based on the provided information, this device is not an IVD (In Vitro Diagnostic).
Here's why:
- IVD Definition: In Vitro Diagnostic devices are used to examine specimens taken from the human body (like blood, urine, or tissue) to provide information about a person's health.
- Device Description and Intended Use: The description clearly states that this device is a shoulder prosthesis intended for surgical implantation to replace a deficient humeral head. It is a physical implant used within the body, not a device used to test samples outside the body.
- Lack of IVD Characteristics: There is no mention of analyzing biological samples, performing tests on specimens, or providing diagnostic information based on such analysis.
Therefore, the Tornier Pyrocarbon Humeral Head associated with the Tornier Flex Stem is a surgical implant, not an In Vitro Diagnostic device.
N/A
Intended Use / Indications for Use
The Tornier Pyrocarbon Humeral Head associated with the Tornier Flex Stem is indicated for use as a replacement of deficient humeral heads disabled by:
- Non-inflammatory degenerative joint diseases (osteoarthritis, avascular necrosis) .
- . Traumatic arthritis.
The Tornier Pyrocarbon Humeral Head Shoulder Prosthesis, combined with the Tornier Flex Humeral Stem, are to be used only in patients with an intact or reconstructable rotator cuff and if the native glenoid surface is intact or sufficient, where they are intended to increase mobility, stability, and relieve pain.
Note: The coated humeral stem is intended for cementless use. The noncoated humeral stem is for cemented use only
Product codes
OKW
Device Description
The Tornier Pyrocarbon Humeral Head (Figure 1) is a prescription use device that is comprised of the pyrolytic carbon (pyrocarbon) articulating surface and a cobalt chromium alloy double taper neck. The humeral head is provided pre-assembled to the double taper to the end user and is compacted onto 510(k) cleared compatible humeral stems (K151293) for replacement of deficient humeral heads disabled by noninflammatory arthritis, or traumatic arthritis. The pyrocarbon articulating surface is made of a graphite substrate core, coated with a layer of pyrolytic carbon deposited onto the substrate via chemical vapor deposition. The pvrocarbon articulating surface is pressed into the cobalt chromium alloy double taper neck during the manufacturing process, is provided as a singular construct to the end user, and is not intended to be disassembled by the end user. Compatible monoblock humeral stems are available in titanium plasma spray coated or uncoated versions. The humeral stems are designed with a female taper connection to accept the mating male taper connection of the pyrocarbon humeral heads.
Mentions image processing
Not Found
Mentions AI, DNN, or ML
Not Found
Input Imaging Modality
Not Found
Anatomical Site
Shoulder joint, humeral head
Indicated Patient Age Range
Not Found
Intended User / Care Setting
Not Found
Description of the training set, sample size, data source, and annotation protocol
Not Found
Description of the test set, sample size, data source, and annotation protocol
Not Found
Summary of Performance Studies
The sponsor conducted a prospective, multi-center, single-arm investigational study under IDE G140202 - Pyrocarbon IDE Study. A total of 157 subjects were enrolled across 18 sites within the US. The study design changed to a non-inferiority historically controlled study with Propensity Score (PS) analysis at FDA's request. Control data originated from the Aequalis Post-Market Outcomes Study dataset for a 510(k) cleared cobalt chromium humeral head hemiarthroplasty device (i.e. Tornier Flex Cobalt Chromium Humeral Head). After PS matching, 169 control subjects were selected. The purpose of the study was to evaluate the safety and effectiveness of the pyrocarbon humeral head as a hemiarthroplasty for patients with non-inflammatory arthritis or post-traumatic arthritis when compared to cobalt chromium humeral heads. Subjects were followed to Month 24 posttreatment for study endpoint analysis.
The primary composite endpoint for the study was defined as the rate of patient success at 24 months. A patient was considered a success at 24 months if:
- Their change in Constant score is ≥ 17; .
- o They did not have revision surgery:
- . There is no radiographic evidence of system disassembly or fracture; AND
- . They did not have a system-related serious adverse event.
For the intent to treat set, using multiple imputation to account for missing data, the success rate was 82.7% for the Pyrocarbon group, and 66.8% for the control group. The success rate of Pyrocarbon group led the control by 15.9%. For the per protocol set, after imputation, the success rate was 87.9% for the Pyrocarbon group, and 63.1% for the control group, success rate for Pyrocarbon group was 24.8% higher than for the control group. The sponsor applied a twowav generalized linear model to adjust for propensity score subclass, and used model results to support the non-inferiority claim.
Secondary endpoints assessed during the study included the Constant Score, Adjusted Constant Score, American Shoulder and Elbow Surgeons (ASES) Score, Single Assessment Numeric Evaluation (SANE), EQ-5D, Pain measured by a visual analog scale (VAS), ROM, and strength.
Key Metrics
Primary Endpoint Success at Month 24 Post-treatment:
- Free of Revision: Pyrocarbon N=157, n=154, 98.1%; Control N=169, n=160, 94.7%
- Constant Score improved 17+ points: Pyrocarbon N=143, n=121, 84.6%; Control N=67, n=49, 73.1%
- Free of disassembly or fracture: Pyrocarbon N=157, n=157, 100.0%; Control N=169, n=169, 100.0%
- Free of device related SAE: Pyrocarbon N=157, n=152, 96.8%; Control N=169, n=160, 94.7%
- Composite Clinical Success (CCS): Pyrocarbon N=157, 82.7%; Control N=169, 66.8%
- CCS - Completers: Pyrocarbon N=146, n=120, 82.2%; Control N=73, n=49, 67.1%
- CCS - Best Case: Pyrocarbon N=157, n=131, 83.4%; Control N=169, n=49, 29.0%
- CCS - Worst-case: Pyrocarbon N=157, n=120, 76.4%; Control N=169, n=145, 85.8%
Safety:
- Pyrocarbon group: 3 revisions (3/157, 1.91%), zero instances of humeral head fracture and/or disassembly at 24 months. Rotator cuff tear (2/157, 1.27%).
- Historical Control: 9 revisions (9/169, 5.33%).
Predicate Device(s)
Not Found
Reference Device(s)
Predetermined Change Control Plan (PCCP) - All Relevant Information
Not Found
N/A
0
DE NOVO CLASSIFICATION REQUEST FOR TORNIER PYROCARBON HUMERAL HEAD
REGULATORY INFORMATION
FDA identifies this generic type of device as:
Shoulder joint humeral (hemi-shoulder) ceramic head / metallic stem cemented or uncemented prosthesis. A shoulder joint humeral (hemi-shoulder) ceramic head / metallic stem cemented or uncemented prosthesis is a device using a replacement humeral head made of ceramic materials, such as pyrolytic carbon, and a stem made of alloys, such as cobalt-chromium-molybdenum. It is intended to be implanted to replace the articular surface of the proximal end of the humerus and to be fixed with or without bone cement (§ 888.3027). This device is not intended for use in total shoulder arthroplasty.
NEW REGULATION NUMBER: 888.3695
CLASSIFICATION: Class II
PRODUCT CODE: OKW
BACKGROUND
DEVICE NAME: Tornier Pyrocarbon Humeral Head
SUBMISSION NUMBER: DEN220012
DATE DE NOVO RECEIVED: February 8, 2022
SPONSOR INFORMATION:
Tornier SAS % Tornier, Inc. 10801 Nesbitt Avenue South Bloomington, Minnesota 55437
INDICATIONS FOR USE
The Tornier Pyrocarbon Humeral Head is indicated as follows:
The Tornier Pyrocarbon Humeral Head associated with the Tornier Flex Stem is indicated for use as a replacement of deficient humeral heads disabled by:
- Non-inflammatory degenerative joint diseases (osteoarthritis, avascular necrosis) .
- . Traumatic arthritis.
1
The Tornier Pyrocarbon Humeral Head Shoulder Prosthesis, combined with the Tornier Flex Humeral Stem, are to be used only in patients with an intact or reconstructable rotator cuff and if the native glenoid surface is intact or sufficient, where they are intended to increase mobility, stability, and relieve pain.
Note: The coated humeral stem is intended for cementless use. The noncoated humeral stem is for cemented use only
LIMITATIONS
The sale, distribution, and use of the Tornier Pyrocarbon Humeral Head are restricted to prescription use in accordance with 21 CFR 801.109.
PLEASE REFER TO THE LABELING FOR A COMPLETE LIST OF WARNINGS, PRECAUTIONS AND CONTRAINDICATIONS.
DEVICE DESCRIPTION
Implant Description
The Tornier Pyrocarbon Humeral Head (Figure 1) is a prescription use device that is comprised of the pyrolytic carbon (pyrocarbon) articulating surface and a cobalt chromium alloy double taper neck. The humeral head is provided pre-assembled to the double taper to the end user and is compacted onto 510(k) cleared compatible humeral stems (K151293) for replacement of deficient humeral heads disabled by noninflammatory arthritis, or traumatic arthritis. The pyrocarbon articulating surface is made of a graphite substrate core, coated with a layer of pyrolytic carbon deposited onto the substrate via chemical vapor deposition. The pvrocarbon articulating surface is pressed into the cobalt chromium alloy double taper neck during the manufacturing process, is provided as a singular construct to the end user, and is not intended to be disassembled by the end user. Compatible monoblock humeral stems are available in titanium plasma spray coated or uncoated versions. The humeral stems are designed with a female taper connection to accept the mating male taper connection of the pyrocarbon humeral heads.
2
Image /page/2/Picture/0 description: The image shows a shoulder joint replacement. On the left is the humeral head component, which is a metal ball that replaces the head of the humerus. In the middle is the scapula, which is the bone that forms the shoulder blade. On the right is the glenoid component, which is a plastic socket that replaces the glenoid fossa of the scapula.
Figure 1: Tornier Pyrocarbon Humeral Head, with the pyrocarbon articulating surface pre-assembled onto the cobalt chromium alloy double taper neck alone (left), and with the Tornier Flex Shoulder humeral stem in a hemi-shoulder arthroplasty configuration (right)
Instrument Description
The Tornier Pyrocarbon Humeral Head and compatible humeral stems are implanted using Class I surgical instruments regulated under 21 CFR 888.4540, product code LXH: trials regulated under 21 CFR 888.4800, product code HWT; class II instruments previously cleared with the compatible humeral stems (K151293); and the following device specific instrumentation specific to facilitate implantation of the Tornier Pyrocarbon Humeral Head:
- . Spring impactor, impactor tip supports, and pyrocarbon head impactor tip: Reusable instruments designed to deliver an appropriate amount of energy to impact the Tornier Pyrocarbon Humeral Head onto the humeral stem without damaging the pyrolytic carbon articulating surface.
- Manual planar reamers and reamer tip: Reusable instruments provided for . reaming the humeral cut surface following stem implantation to ensure the bone cut is perfectly aligned so as to not interfere with seating of the Tornier Pyrocarbon Humeral Head.
SUMMARY OF NONCLINICAL/BENCH STUDIES
BIOCOMPATIBILITY/MATERIALS
The Tornier Pyrocarbon Humeral Head is manufactured from the following patient contacting materials:
Table 2: Manufactured Materials of Patient-Contacting Device Components
3
| Description | Material | Direct
Patient
Contact | Contact Duration |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|
| Articulating
Surface | Pyrocarbon | Yes | Permanent (>30 d) |
| Double
Taper | Cobalt Chromium Alloy per
ISO 5832-7 (Implants for
surgery — Metallic materials —
Part 7: Forgeable and cold-
formed cobalt-chromium-
nickel-molybdenum-iron alloy) | Yes | Permanent (>30 d) |
| Patient-
contacting
Instruments | Medical Grade Stainless Steel,
Polypropylene, and Silicone | Yes | Limited (≤24 h) |
Biocompatibility evaluation has been completed according to 2020 FDA Guidance, Use of International Standard ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process."
For the permanent implant, the Table 3 shows the biocompatibility testing performed and the results, which were acceptable for a permanent implant in contact with bone/tissue:
Test Description | Result |
---|---|
Cytotoxicity (per ISO 10993-5 (Biological | |
evaluation of medical devices — Part 5: | |
Tests for in vitro cytotoxicity)) | Non-cytotoxic |
Irritation (per ISO 10993-10 (Biological | |
evaluation of medical devices — Part 10: | |
Tests for irritation and skin sensitization)) | Non-Irritant |
Sensitization (per ISO 10993-10 | |
(Biological evaluation of medical devices | |
— Part 10: Tests for irritation and skin | |
sensitization)) | Non-Sensitizing |
Implantation Effects (per ISO 10993-6 | |
(Biological evaluation of medical devices | |
— Part 6: Tests for local effects after | |
implantation)) | Null to Minimal Reactivity |
Material Mediated Pyrogenicity (per ISO | |
10993-11 (Biological evaluation of | |
medical devices — Part 11: Tests for | |
systemic toxicity)) | Non-Pyrogenic |
Table 3: Implant Biocompatibility Testing Performed
4
| Acute/Subacute/Subchronic/Chronic
Systemic Toxicity, Genotoxicity and
Carcinogenicity (addressed through
chemical characterization and
toxicological risk assessment per ISO
10993-18 (Biological evaluation of
medical devices — Part 18: Chemical
characterization of medical device
materials within a risk management
process)/ISO 10993-17 (Biological
evaluation of medical devices — Part 17:
Establishment of allowable limits for | Non-systemically
toxic/genotoxic/carcinogenic |
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------- |
---|
For the reusable silicone instruments, the Table 4 shows the biocompatibility testing performed and the results, which were acceptable for instruments in limited contact with bone/tissue:
Test Description | Result |
---|---|
Cytotoxicity (per ISO 10993-5 (Biological | |
evaluation of medical devices — Part 5: | |
Tests for in vitro cytotoxicity)) | Non-cytotoxic |
Irritation (per ISO 10993-10 (Biological | |
evaluation of medical devices — Part 10: | |
Tests for irritation and skin sensitization)) | Non-Irritant |
Sensitization (ISO 10993-10 (Biological | |
evaluation of medical devices — Part 10: | |
Tests for irritation and skin sensitization)) | Non-Sensitizing |
Acute Systemic Toxicity (per ISO 10993- | |
11 (Biological evaluation of medical | |
devices — Part 11: Tests for systemic | |
toxicity)) | Non-Toxic |
Table 4: Silicone Instrument Biocompatibility Testing Performed
In addition to the biocompatibility testing of silicone instruments, reference to a master file was provided to support the Material Mediated Pyrogenicity Endpoint to demonstrate the instrument is non-pyrogenic.
For the reusable stainless steel and polypropylene instruments, a manufacturing rationale was provided to demonstrate acceptable biocompatibility for instruments in limited contact with bone/tissue.
STERILITY / PACKAGING AND SHELF-LIFE / PYROGENICITY
Sterility:
5
The Tornier Pyrocarbon Humeral Head is a single-use device provided clean and sterile to the end user. Gamma Sterilization of the device has been validated to provide a Sterility Assurance Level (SAL) of 10-6 based on the VDmax-5 method as recommended by FDA Recognized Consensus Standard series ANSI/AAMI/ISO 11137-1 (Sterilization of health care products - Radiation - Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices)/-2 (Sterilization of health care products - Radiation - Part 2: Establishing the sterilization dose).
Packaging and Shelf-Life:
The sterile barrier system consists of a double blister package sealed with Tyvek lids which is placed into a protective cardboard box. Sterilized samples accelerated aged to 5 years were used to determine the sterile shelf-life of the device. The mechanical performance of the device is not expected to degrade over time. Distribution testing (ASTM D4169 (Standard practice for performance testing of shipping containers and systems)), package integrity testing (bubble leak test. ASTM F2096 (Standard test method for detecting gross leaks in packaging by internal pressurization (bubble test))), and seal strength testing (ASTM F88/F88M (Standard test method for seal strength of flexible barrier materials)) were used to validate the sterile shelf-life of the device. Nonclinical performance testing of the implant was used to assess the shelf-life of the device. The testing confirmed a 5 year shelf-life.
Pyrogenicity:
Bacterial endotoxins testing (BET) was performed to determine whether the Tornier Pyrocarbon Humeral Head met pyrogen limit specifications. All tested devices passed with a reported value of 1 Fonte H, Amorim-Barbosa T, Diniz S, Barros L. Ramos J, Claro R. Shoulder Arthroplasty Options for Glenohumeral Osteoarthritis in Young and Active Patients (94%) potential missing data combinations. This indicates that the tipping point analysis, along with the multiple imputation analysis and supporting information, demonstrate that the non-inferiority result is insensitive to the presence of missing data.
Secondary Endpoints
Secondary endpoints assessed during the study included the Constant Score, Adjusted Constant Score, American Shoulder and Elbow Surgeons (ASES) Score, Single Assessment Numeric Evaluation (SANE), EQ-5D, Pain measured by a visual analog scale (VAS), ROM, and strength. The Adjusted Constant Score change of 40.5 points in 24 months, observed in the Pyrocarbon IDE study is greater than the minimally clinical important differences (MCID) determined by Holmgren et al who defined a MCID in the Adjusted Constant score for subjects treated conservatively for subacromial pain to be between 17-24 points.2 The Constant Score change of 34.3 observed in the Pyrocarbon IDE study is greater than the MCID determined by additional literature that reports the MCID in Constant Score for shoulder arthroplasty to be 5.7-9.4.3 The ASES change of 43.4 in 24 months, observed in the Pyrocarbon IDE study is greater than the MCID determined by Tashiian et al (12-17 points) for rotator cuff disease (tendonitis or tears).4 The SANE change of 49.5 points observed in the Pyrocarbon IDE study is greater than the MCID determined by Zhou et al (27.25 points) for rotator cuff repairs.6 EQ-5D change of 0.21 points observed in the Pyrocarbon IDE study is greater than the MCID determined by Hao et al (0.02-0.11) for subacromial pain.6
Pain was assessed in the study using a 10-pt (0-no pain at all. 10-pain as bad as it can be) pain VAS (taken from the pain portion of the ASES standardized score). The mean subject reported pain went from 5.5 to 1.1 on the VAS scale with a mean change of -4.2 ± 2.8. The change observed in the Pyrocarbon IDE study is greater than the MCID determined by Hao et al (-1.5) for subacromial pain. The ROM change observed in the Pyrocarbon IDE study at two years are consistent with the results observed by Sowa et al who assessed change in ROM at an average of four years after shoulder hemiarthroplasty. 7 The mean change in strength observed was 5.0±7.6 lbs. at 24 months. These results in the Pyrocarbon IDE study at 24 months are consistent with the
2 Holmgren T. Oberg B. Adolfsson L. Björnsson Hallgren H. Minimal important changes in the Constant-Murley score in patients with subacromial pain. J Shoulder Elbow Surg. 2014;23(8):1083-1090. doi:10.1016/j.jse.2014.01.014
3 Dabija DI, Jain NB. Minimal Clinically Important Difference of Shoulder Outcome Measures and Diagnoses: A Systematic Review. Am J Phys Med Rehabil. 2019;98(8):671-676. doi:10.1097/PHM.00000000001169
4 Tashian RZ. Deloach J. Green A. Porucznik CA. Powell AP. Minimal clinically important differences in ASES and simple shoulder test scores after nonoperative treatment of rotator cuff disease. J Bone Joint Surg Am. 2010:92(2):296-303. doi:10.2106/JBJS.H.01296
5 Zhou L. Nataraian M. Miller BS. Gagnier JJ. Establishing Minimal Important Differences for the VR-12 and SANE Scores in Patients Following Treatment of Rotator Cuff Tears. Orthop J Sports Med.
2018:6(7):2325967118782159. Published 2018 Jul 26. doi:10.1177/2325967118782159
6 Hao O. Devii T. Zeraatkar D. et al. Minimal important differences for improvement in shoulder condition patientreported outcomes: a systematic review to inform a BMJ Rapid Recommendation. BMJ Open. 2019:9(2):e02877. Published 2019 Feb 20. doi:10.1136/bmjopen-2018-028777
7 Sowa B. Thierjung H. Bülhoff M, et al. Functional results of hemi- and total shoulder arthroplasty according to diagnosis and patient age at surgery. Acta Orthop. 2017;88(3):310-314. doi:10.1080/17453674.2017.1280656
13
12-month results observed by Sperling et al who assessed change in strength after total shoulder arthroplasty on subjects with an intact rotator cuff.8
Safety Analysis
There were no Unanticipated Adverse Device Effects as determined by the independent medical monitor. All device- and procedure-related serious adverse events (SAEs) were considered expected complications for total shoulder arthroplasty. In the IDE data, there were 3 revisions (3/157, 1.91%) and zero instances of humeral head fracture and/or disassembly at 24 months for the Pyrocarbon group. In Historical Control, SAEs reported include 9 revisions (9/169, 5.33%), which is consistent with the hemiarthroplasty revision rate (5.45%) reported in the 2021 Australian joint registry.
SAEs possibly related to the device include rotator cuff tear (2/157, 1.27%). SAEs possibly related to the procedure include: arthrofibrosis, atelectasis, biceps rupture, brachial plexus palsy, deep vein thrombosis, pain, pulmonary emboli, rotator cuff tear, stroke, and infection.
Pediatric Extrapolation
In this De Novo request, existing clinical data were not leveraged to support the use of the device in a pediatric patient population.
LABELING
The labeling consists of the following: device description, indications for use, instructions for use including surgical steps (e.g., device selection and placement), principles of device operation, identification of device materials, contraindications, warnings, precautions, a list of potential adverse effects, and importance of patient compliance with postoperative activity restrictions. Furthermore, the sterile packaging includes a shelf-life for the device. The labeling meets the requirements of 21 CFR 801.109 for prescription devices.
RISKS TO HEALTH
The table below identifies the risks to health that may be associated with use of the shoulder joint humeral (hemi-shoulder) ceramic head / metallic stem cemented or uncemented prosthesis and the measures necessary to mitigate these risks.
Identified Risks to Health | Mitigation Measures |
---|---|
Adverse events of the index shoulder including | |
pain, unanticipated adverse device effects, | |
subsequent surgical interventions, wear of the | |
native bone, osteolysis, loosening and | |
migration, and revision, including revision due | Clinical data |
Non-clinical performance testing | |
Biocompatibility evaluation |
8 Sperling JW. Kaufman KR. Schleck CD. Cofield RH. A biomechanical analysis of strength and motion following total shoulder arthroplasty. Int J Shoulder Surg. 2008;2(1):1-3. doi:10.4103/0973-6042.39579
14
Identified Risks to Health | Mitigation Measures |
---|---|
to device wear, component dissociation, or | |
device brittle fracture | |
Adverse tissue reaction due to | |
• Device materials | |
• Fretting and corrosion | |
• Wear particulates | Biocompatibility evaluation |
Non-clinical performance testing | |
Infection | Sterilization validation |
Reprocessing validation | |
Shelf-life testing | |
Pyrogenicity testing | |
Labeling | |
Insufficient range of motion | Non-clinical performance testing |
SPECIAL CONTROLS
In combination with the general controls of the FD&C Act, the shoulder joint humeral (hemishoulder) ceramic head / metallic stem cemented prosthesis is subject to the following special controls:
-
- Clinical data must demonstrate that the device performs as intended under anticipated conditions of use and include the following:
- a. Evaluation of improvement of shoulder function and reduction of symptoms, including pain and function, for the indications for use; and
- b. Evaluation of adverse events, including pain, unanticipated adverse device effects, subsequent surgical interventions, wear of the native bone, osteolysis, loosening and migration, and revision, including revision due to device wear, component dissociation, or device brittle fracture.
-
- Non-clinical performance testing must demonstrate that the device performs as intended under anticipated conditions of use and include the following:
- a. Evaluation of the mechanical function (mechanical fatigue strength including evaluation of fretting and corrosion, static mechanical strength, modular component disassembly strength, and wear analysis) and durability of the implant; and
- b. Evaluation of worst-case device range of motion.
-
- All patient-contacting components of the device must be demonstrated to be biocompatible.
-
- Performance data must support the sterility and pyrogenicity of the device components intended to be sterile.
-
- Performance data must validate the reprocessing instructions for the reusable components of the device.
-
- Performance data must support the shelf-life of the device by demonstrating continued sterility, package integrity, and device functionality over the identified shelf-life.
-
- Labeling must include the following:
- a. Validated methods and instructions for reprocessing of any reusable components; and
15
- b. A shelf-life.
BENEFIT-RISK DETERMINATION
BENEFITS:
-
- The clinical study demonstrates Tornier Pyrocarbon Humeral Head leads to clinically meaningful improvements in shoulder function and symptoms (e.g., reduction in pain) that are maintained over time to at least 24 months;
-
- Performance has demonstrated to be non-inferior to Cobalt Chrome Hemiarthroplasty;
-
- Literature on clinical use and in vitro testing demonstrate decreases in native glenoid wear when compared to Cobalt Chrome devices;
-
- The Tornier Pyrocarbon Humeral Head secondary endpoint results (Constant Score, ASES, SANE, VAS, Strength, and Revision Rate) support clinically meaningful, patientvalued benefits at a magnitude similar to, or numerically greater than, those observed with the Control device: AND
-
- Improvement in long-term implant survival rates and delay of TSA conversion.
RISKS:
-
- Adverse events of the index shoulder including pain, unanticipated adverse device effects, subsequent surgical interventions, wear of the native bone, osteolysis, loosening and migration, and revision, including revision due to device wear, component dissociation, or device brittle fracture:
-
- Adverse tissue reactions due to device materials: fretting and corrosion: and wear particulates:
-
- Infection: AND
-
- Insufficient range of motion.
Based on the totality of the evidence, the Tornier Pyrocarbon Humeral Head demonstrated a reasonable assurance of safety and effectiveness for the device for its intended use/indications for use and while there is a medium degree of uncertainty in this finding due to missing data from the control group in the clinical study, the risks are not greater than the current standard of care. In addition, the pyrocarbon humeral head demonstrated lower revision rates over the course of the clinical study, and literature and in vitro testing demonstrate a probable benefit of decreased glenoid wear when compared to a cobalt chrome hemiarthroplasty. In conclusion, the benefits of using the Tornier Pyrocarbon Humeral Head for its intended use/indications for use outweigh the risks to health.
PATIENT PERSPECTIVES
Patient perspectives considered for the Tornier Pyrocarbon Humeral Head during the review include:
The primary composite study endpoints included assessment of improvement in pain and function using patient reported metrics (e.g., Constant score) at month 24.
16
Additionally, pre-specified secondary effectiveness study endpoints included the following scales: Constant score, ASES, SANE, EQ5D, VAS Pain Scale, ROM, and change in strength to evaluate the treatment effect at 24 months. These patient reported outcomes (PROs) are used to demonstrate a clinically meaningful improvement in pain and function.
BENEFIT/RISK CONCLUSION
In conclusion, given the available information above, for the following indication statement:
"The Tornier Pyrocarbon Humeral Head associated with the Tornier Flex Stem is indicated for use as a replacement of deficient humeral heads disabled by:
- · Non-inflammatory degenerative joint diseases (osteoarthritis, avascular necrosis).
- . Traumatic arthritis.
The Tornier Pyrocarbon Humeral Head Shoulder Prosthesis, combined with the Tornier Flex Humeral Stem, are to be used only in patients with an intact or reconstructable rotator cuff and if the native glenoid surface is intact or sufficient, where they are intended to increase mobility, stability, and relieve pain.
Note: The coated humeral stem is intended for cementless use. The noncoated humeral stem is for cemented use only"
The probable benefits outweigh the probable risks for the Tornier Pyrocarbon Humeral Head. The device provides benefits, and the risks can be mitigated by the use of general controls and the identified special controls.
CONCLUSION
The De Novo for the Tornier Pyrocarbon Humeral Head is granted and the device is classified as follows:
Product Code: OKW Device Type: Shoulder joint humeral (hemi-shoulder) ceramic head / metallic stem cemented or uncemented prosthesis Regulation Number: 21 CFR 888.3695 Class: Class II