Search Results
Found 1 results
510(k) Data Aggregation
(267 days)
The UC-1800 Automatic Urine Analyzer is automated instrument which is intended for professional, in vitro diagnostic use only.
Depending on the reagent strips being used, the instruments perform semi-quantitative detection of the following analytes in urine: ascorbic acid, microalbumin, leukocytes, creatinine, ketone, urobilinogen, bilirubin, glucose, protein, specific gravity, blood and pH in urine and for qualitative determination of nitrite in urine hydrometer (optional) can determine the color and turbidity of urine. Test results may provide information regarding the status of carbohydrate metabolism, kidney and liver function, acid-base balance and bacteriuria.
The URIT 11FA urine reagent strips provide semi-quantitative tests for ascorbic acid, leukocytes, setone, urobilinogen, bilirubin, glucose, protein, specific gravity, blood and pH in urine and for qualitative determination of nitrite in urine. The URIT 11FA urine reagent strips are for use with the UC-1800 Automatic Urine Analyzer and are for professional, in vitro diagnostic use only. Test results may provide information regarding the status of carbohydrate metabolism, kidney and liver function, acid-base balance and bacteriuria.
The URIT 12FA urine reagent strips provide semi-quantitative tests for microalbumin, leukocytes, creatinine, ketone, urobilinogen, bilirubin, glucose, protein, specific gravity, blood and pH in urine and for qualitative determination of nitrite in urine. The URIT 12FA urine reagent strips are for use with the UC-1800 Automatic Urine Analyzer and are for professional, in vitro diagnostic use only. Test results may provide information regarding the status of carbohydrate metabolism, kidney and liver function, acid-base balance and bacteriuria.
UC-1800 Automatic Urine Analyzer is characterized by fully automated and simple operation. All you need to do is to set test strips and samples, press the START key, and the rest of operations are fully automated with UC-1800, which can measure samples continuously. For each measurement, the instrument automatically performs a series of operation: sample transmitting, sample aspirating, sample dropping, rinsing strip feeding and color identifying, etc. The instrument is used in conjunction with a serial of URIT urine test strips for measuring 15 parameters. Measure results are printed through either built-in printer or external printer.
Urine Reagent Strips is used to determine the components to be measured in urine by dry chemistry method together with urine analyzer. Various components to be tested in the urine can result in changes to the colors of corresponding reagent blocks on the Urine Reagent Strips. The depth of reaction color is proportional to the corresponding component to be tested in the urine. Qualitative and semi-quantitative detection can be conducted to the contents of the corresponding detected components. As a reagent for the determination of multiple components in human urine and the most basic test item for clinical urine routine test), it is suitable for the screening test or auxiliary diagnosis for clinical diagnosis, without the specificity for diseases or indications, and urine dry chemistry test is a screening test and cannot be used as a single diagnostic method.
The provided document describes the URIT UC-1800 Automatic Urine Analyzer and its associated reagent strips (URIT 11FA and 12FA Urine Reagent Strips). The information below summarizes the acceptance criteria and the studies performed to demonstrate the device meets these criteria.
1. Table of Acceptance Criteria and Reported Device Performance
The document presents the performance in terms of "Exact agreement" and "± 1 color block" agreement with expected values or between the proposed device and predicate devices. For most analytes, the criteria seem to be high exact agreement and 100% agreement within ±1 color block. Specific thresholds for acceptance were not explicitly stated as global criteria but are implied by the "Qualified" conclusions for individual tests. The comparison to predicates also uses agreement rates.
Below is a summary of the reported device performance from the "Precision / Reproducibility" section (Tables 8, 9, 10, 11) for repeatability and "Comparison Studies" section (Tables a.1, a.2, a.3) for agreement with predicate devices. Given the extensive number of analytes and concentration levels, key representative results are presented.
a. Repeatability (Within-Run Precision)
Reported as "Exact agreement" and "± 1 color block". All tests for all expected values show 100% agreement for "± 1 color block". Exact agreement varies slightly, but most are 100% or very close.
Test (Analyte) | Expected Value (Example) | Exact Agreement (Proposed Device: UC-1800 with 11FA/12FA strips) | Conclusion |
---|---|---|---|
Ascorbic acid (11FA) | -(0) mg/dL | 100% (60/60) | Qualified |
Nitrite (11FA/12FA) | - (Negative) | 100% (60/60) | Qualified |
Leukocyte (11FA/12FA) | -(0) leu/μL | 100% (60/60) | Qualified |
Ketone (11FA) | -(0) mg/dL | 100% (60/60) | Qualified |
Ketone (12FA) | +1(15) mg/dL | 96.7% (58/60) | Qualified |
Urobilinogen (11FA/12FA) | Normal EU/dL | 100% (60/60) | Qualified |
Bilirubin (11FA) | +2(2.0) mg/dL | 96.7% (58/60) | Qualified |
Bilirubin (12FA) | +2(2.0) mg/dL | 91.7% (55/60) | Qualified |
Glucose (11FA/12FA) | All | 100% (60/60) | Qualified |
Protein (11FA/12FA) | +1(30) mg/dL | 93.3% (56/60) | Qualified |
Specific Gravity (11FA) | 1.010 | 96.7% (58/60) | Qualified |
Specific Gravity (12FA) | All | 100% (60/60) | Qualified |
Blood (11FA) | +1(25) Cell/μL | 98.3% (59/60) | Qualified |
Blood (12FA) | All | 100% (60/60) | Qualified |
pH (11FA) | 7.0 | 96.7% (58/60) | Qualified |
pH (12FA) | All | 100% (60/60) | Qualified |
Microalbumin (12FA) | All | 100% (60/60) | Qualified |
Creatinine (12FA) | All | 100% (60/60) | Qualified |
Turbidity (Physical Module) | All | 100% (60/60) | Qualified |
Color (Physical Module) | All | 100% (60/60) | Qualified |
b. Reproducibility (Between-Run Precision)
Reported as "Exact agreement" and "± 1 color block". All tests for all expected values show 100% agreement for "± 1 color block". Exact agreement varies slightly, but most are 100% or very close.
Test (Analyte) | Expected Value (Example) | Exact Agreement (Proposed Device: UC-1800 with 11FA/12FA strips) | Conclusion |
---|---|---|---|
Ascorbic acid (11FA) | +2(50) mg/dL | 94.2% (113/120) | Qualified |
Protein (11FA) | +2(100) mg/dL | 99.2% (119/120) | Qualified |
Blood (11FA) | +2(80) Cell/μL | 95% (114/120) | Qualified |
pH (11FA) | 7.0 | 99.2% (119/120) | Qualified |
Nitrite (12FA) | All | 100% (120/120) | Qualified |
Blood (12FA) | +2(80) Cell/μL | 95.8% (115/120) | Qualified |
All other analytes (11FA/12FA) | Most levels | 100% (120/120) or very close | Qualified |
c. Comparison with Predicate Devices
Analyte (Strip) | Predicate Device | Agreement Type | Agreement Rate (%) (Reported value from the table) | Conclusion |
---|---|---|---|---|
Ascorbic acid (11FA) | Uritest-500B (K082811) | Complete agreement | 97.60% to 100% across all levels (e.g., 99.00% for +1(25) level) | Subst. Eq. |
Leukocyte (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 95.80% to 100% across all levels (e.g., 95.80% for +2(125)) | Subst. Eq. |
Ketone (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 97.40% to 100% across all levels (e.g., 97.40% for +1(15)) | Subst. Eq. |
Nitrite (11FA/12FA) | Uritest-500B (K082811) | Overall Agreement (OPA) | 99.40% (11FA); 98.70% (12FA) | Subst. Eq. |
Urobilinogen (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 95.50% to 100% across all levels (e.g., 95.50% for +1(2.0) on 12FA) | Subst. Eq. |
Bilirubin (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 95.20% to 100% across all levels (e.g., 95.20% for +2(2.0) on 12FA) | Subst. Eq. |
Glucose (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 96.30% to 100% across all levels (e.g., 96.30% for +1(100)) | Subst. Eq. |
Protein (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 95.50% to 100% across all levels (e.g., 95.50% for +1(30) on 12FA) | Subst. Eq. |
pH (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 97.80% to 100% across all levels (e.g., 97.80% for 6.5) | Subst. Eq. |
Specific Gravity (11FA/12FA) | Uritest-500B (K082811) | Complete agreement | 97.80% to 100% across all levels (e.g., 97.80% for 1.010 on 12FA) | Subst. Eq. |
Microalbumin (12FA) | Mission® U120 Ultra Urine Analyzer (K142391) | Complete agreement | 83.33% for 30mg/L, up to 98.21% for 150mg/L | Subst. Eq. |
Creatinine (12FA) | Mission® U120 Ultra Urine Analyzer (K142391) | Complete agreement | 90.91% for 300mg/dL, up to 97.74% for 50mg/dL | Subst. Eq. |
Color (Physical module) | AUTION MAX AX-4030 Urinalysis System (K093098) | Coincidence rate | 91.29% (Colorless) to 98.48% (Brown) | Subst. Eq. |
Turbidity (Physical module) | AUTION MAX AX-4030 Urinalysis System (K093098) | Coincidence rate | 96.00% (Turbid) to 100% (Micro turbid) | Subst. Eq. |
2. Sample Sizes Used for the Test Set and Data Provenance
-
Repeatability (within-run) & Reproducibility (between-run):
- Sample Size:
- Repeatability: 60 measurements per concentration level per analyte (20 replicates x 3 instruments).
- Reproducibility: 120 measurements per concentration level per analyte (20 days x 2 runs/day x 1 time/run in 3 sites, with 1 instrument/site, 3 operators).
- Data Provenance: The document does not explicitly state the country of origin or if the data was retrospective or prospective. It refers to "negative urines and spiked urines of known concentrations." This suggests controlled laboratory-prepared samples rather than direct patient samples.
- Sample Size:
-
Linearity/Assay Reportable Range:
- Sample Size: 63 measurements per concentration level per analyte (reference solutions tested 21 times on 3 UC-1800 machines with 3 lots of reagent strips).
- Data Provenance: Laboratory-prepared reference solutions, not clinical samples.
-
Analytical Sensitivity: No sample sizes mentioned, values are stated directly.
-
Critical Value: No sample sizes mentioned, values are stated directly.
-
Analytical Specificity (Interference, pH, Color, Specific Gravity):
- Sample Size: For interference studies, samples were tested 5 times on 2 UC-1800 machines with 2 batch numbers of 11FA and 12FA reagent strips. This totals 20 measurements per condition (5 tests x 2 machines x 2 strips).
- Data Provenance: Laboratory-prepared urine samples (negative samples prepared and spiked with interfering substances or adjusted for pH/color/SG).
-
Comparison Studies with Predicate Devices (Clinical Samples):
- Uritest-500B (K082811): 1000 clinical urine samples.
- Mission® U120 Ultra Urine Analyzer (K142391): 979 clinical urine samples.
- AUTION MAX AX-4030 Urinalysis System (K093098):
- Color: 1365 clinical urine samples.
- Turbidity: 1000 clinical urine samples.
- Data Provenance: The document explicitly states "clinical urine samples were collected." The country of origin is not specified but given the submitter's address (China), it is highly likely that these clinical samples were collected in China and were retrospective as the study compares against existing predicate devices.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications of Those Experts
The document does not mention the use of experts to establish a "ground truth" for the test set in the traditional sense of medical image interpretation or clinical diagnosis. For chemical analyzers, the "ground truth" (or reference standard) is typically established by:
- Known concentrations: For repeatability, reproducibility, linearity, and analytical sensitivity, samples are prepared with known concentrations of the analytes.
- Reference methods: For the analytical specificity and comparison studies, the predicate devices themselves or established reference methods (e.g., 2,6-Dichlorophenolindophenol Titration Method for Ascorbic Acid, Lange method for Ketone, etc. as specified in Table 35 "Traceability") serve as the reference for comparison.
Therefore, the concept of "number of experts" and their "qualifications" for ground truth establishment, as typically applied in AI/ML performance evaluation (e.g., for image interpretation), is not directly applicable here. The ground truth is analytical and based on laboratory standards and established measurement techniques.
4. Adjudication Method for the Test Set
Not applicable in the context of this analytical device. As explained above, the "ground truth" refers to known concentrations or results from predicate/reference methods. There isn't a subjective interpretation by multiple experts that would require an adjudication method like 2+1 or 3+1.
5. If a Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
Not applicable. This device is an automated urine analyzer, not an AI/ML-driven diagnostic aid for human readers. It performs measurements to provide semi-quantitative results for various urine analytes. Therefore, there is no human-in-the-loop performance or comparison of human reader improvement with or without AI assistance.
6. If a Standalone (i.e., algorithm only without human-in-the-loop performance) was done
Yes, the studies presented are all standalone performance evaluations of the device (UC-1800 Automatic Urine Analyzer with URIT 11FA/12FA Urine Reagent Strips) without human intervention in the measurement process. The device operates automatically to detect and report analyte levels. The comparison studies demonstrate its performance against existing predicate (standalone) analyzers.
7. The Type of Ground Truth Used
The ground truth used in the studies includes:
- Known Concentrations: For analytical performance studies such as precision (repeatability and reproducibility), linearity, analytical sensitivity, and analytical specificity (interference testing), samples were prepared with known, precisely measured concentrations of the target analytes or interfering substances.
- Predicate Device Measurements: For method comparison studies, the results obtained from the established predicate devices (Uritest-500B Urine Analyzer, Mission® U120 Ultra Urine Analyzer, and AUTION MAX AX-4030 Urinalysis System) served as the reference standard for comparison. These predicate devices also operate based on defined analytical principles.
- Reference Methods: Table 35 details the "Reference Method" used for traceability for each analyte (e.g., 2,6-Dichlorophenolindophenol Titration Method for Ascorbic Acid, Glucose Oxidase Method for Glucose, Acidometer measurement for pH, etc.). This indicates fundamental analytical standards are the basis for the stated detection ranges and performance.
8. The Sample Size for the Training Set
The document does not explicitly mention a "training set" in the context of machine learning. The UC-1800 Automatic Urine Analyzer uses reflectance photometry and other physical principles (refractometer for specific gravity, light-scattering for turbidity, light-transmission for color) to generate results, not an AI algorithm that learns from a dataset in the conventional sense. The "training" of such a system typically involves calibrating optical sensors and algorithms to known standards, which is part of the engineering design and quality control processes.
If interpretation of "training set" refers to the data used for the initial development and calibration of the device's measurement algorithms:
- No specific sample size for a "training set" for an AI model is reported because the device does not employ machine learning that requires a distinct "training set" and "test set" in the typical AI/ML development lifecycle.
- The system is calibrated using URIT urine control materials and calibration test strips (Table 9, "Calibration").
9. How the Ground Truth for the Training Set Was Established
As noted above, the device does not use an AI/ML model with a "training set" in the common understanding. The system's operational parameters and calibration are established using:
- Reference materials and calibrators: The device is calibrated using "URIT urine control materials and calibration test strips" (Table 9, "Calibration"). These control materials and calibration strips would have their values established using highly accurate reference methods or certified reference materials, ensuring traceability to scientific standards (as indicated in Table 35 "Traceability").
- Chemical principles: The underlying "ground truth" for the device's internal algorithms (i.e., how they convert optical signals to analyte concentrations) is based on established chemical reactions and physical measurement principles (e.g., reflectance photometry, refractometry, light scattering, dye-binding, enzymatic reactions). The "ground truth" for developing and fine-tuning these algorithms would be derived from rigorous scientific validation against these known chemical and physical properties.
Ask a specific question about this device
Page 1 of 1