Search Filters

Search Results

Found 1 results

510(k) Data Aggregation

    K Number
    K250337
    Device Name
    AiORTA - Plan
    Date Cleared
    2025-10-30

    (266 days)

    Product Code
    Regulation Number
    892.2050
    Reference & Predicate Devices
    Predicate For
    N/A
    AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
    Intended Use

    The AiORTA - Plan tool is an image analysis software tool for volumetric assessment. It provides volumetric visualization and measurements based on 3D reconstruction computed from cardiovascular CTA scans. The software device is intended to provide adjunct information to a licensed healthcare practitioner (HCP) in addition to clinical data and other inputs, as a measurement tool used in assessment of aortic aneurysm, pre-operative evaluation, planning and sizing for cardiovascular intervention and surgery, and for post-operative evaluation in patients 22 years old and older.

    The device is not intended to provide stand-alone diagnosis or suggest an immediate course of action in treatment or patient management.

    Device Description

    AiORTA - Plan is a cloud-based software tool used to make and review geometric measurements of cardiovascular structures, specifically abdominal aortic aneurysms. The software uses CT scan data as input to make measurements from 2D and 3D mesh based images. Software outputs are intended to be used as a measurement tool used in assessment of aortic aneurysm, pre-operative evaluation, planning and sizing for cardiovascular intervention and surgery, and for post-operative evaluation.

    The AiORTA - Plan software consists of two components, the Analysis Pipeline and Web Application.

    The Analysis Pipeline is the data processing engine that produces measurements of the abdominal aorta based on the input DICOM images. It consists of multiple modules that are operated by a trained Analyst to preprocess the DICOM images, compute geometric parameters (e.g., centerlines, diameters, lengths, volumes), and upload the results to the Web App for clinician review. The Analyst plays a role in ensuring the quality of the outputs. However, the end user (licensed healthcare practitioner) is ultimately responsible for the accuracy of the segmentations, the resulting measurements, and any clinical decisions based on these outputs.

    The workflow of the Analysis Pipeline can be described in the following steps:

    • Input: the Analysis Pipeline receives a CTA scan as input.
    • Segmentation: an AI-powered auto-masking algorithm performs segmentation of the aortic lumen, wall, and key anatomical landmarks, including the superior mesenteric, celiac, and renal arteries. A trained Analyst performs quality control of the segmentations, making any necessary revisions to ensure accurate outputs.
    • 3D conversion: the segmentations are converted into 3D mesh representations.
    • Measurement computation: from the 3D representations, the aortic centerline and geometric measurements, such as diameters, lengths, and volumes, are computed.
    • Follow-up study analysis: for patients with multiple studies, the system can detect and display changes in aortic geometry between studies.
    • Report generation: a report is generated containing key measurements and a 3D Anatomy Map providing multiple views of the abdominal aorta and its landmarks.
    • Web application integration: the outputs, including the segmented CT masks, 3D visualizations, and reports, are uploaded to the Web App for interactive review and analysis.

    The Web Application (Web App) is the front end and user facing component of the system. It is a cloud-based user interface offered to the qualified clinician to first upload de-identified cardiovascular CTA scans in DICOM format, along with relevant demographic and medical information about the patient and current study. The uploaded data is processed asynchronously by the Analysis Pipeline. Once processing is complete, the Web App then enables clinicians to interactively review and analyze the resulting outputs.

    Main features of the Web App include:

    • Segmentation review and correction: Clinicians can review the resulting segmentations from the Analysis Pipeline segmentations by viewing the CT slices alongside the segmentation masks. Segmentations can be revised using tools such as a brush or pixel eraser, with adjustable brush size, to select or remove pixels as needed. When clinicians revise segmentations, they can request asynchronous re-analysis by the Analysis Pipeline, which generates updated measurements and a 3D Anatomy Map of the aorta based on the revised segmentations.
    • 3D visualization: The aorta and key anatomical landmarks can be examined in full rotational views using the 3D Anatomy Map.
    • Measurement tools: Clinicians can perform measurements directly on the 3D Anatomy Map of the abdominal aorta and have access to a variety of measurement tools, including:
      • Centerline distance, which measures the distance (in mm) between two user-selected planes along the aortic centerline.
      • Diameter range, which measures the minimum and maximum diameters (in mm) within the region of interest between two user-selected planes along the aortic centerline.
      • Local diameter, which measures the diameter (in mm) at the user-selected plane along the aortic centerline.
      • Volume, which measures the volume (in mL) between two user-selected planes along the aortic centerline.
      • Calipers, which allow additional linear measurements (in mm) at user-selected points.
    • Screenshots: Clinicians can capture images of the 3D visualizations of the aorta or the segmentations displayed on the CT slices.
    • Longitudinal analysis: For patients with multiple studies, the Web App allows side-by-side review of studies. Clinicians have access to the same measurement and visualization tools available in single-study review, enabling comparison between studies.
    • Reporting: Clinicians can generate and download reports containing either the default key measurements computed by the Analysis Pipeline or custom measurements and screenshots captured during review.
    AI/ML Overview

    Here's a breakdown of the acceptance criteria and the study details for the AiORTA - Plan device, based on the provided FDA 510(k) clearance letter:

    Acceptance Criteria and Reported Device Performance

    Metric/Measurement TypeAcceptance CriteriaReported Device Performance
    Auto-segmentation Masks (prior to analyst correction)
    Dice coefficient (Aortic wall)≥ 80%89% (Overall Mean)
    Dice coefficient (Aortic lumen)≥ 80%89% (Overall Mean)
    Landmark identification (Celiac artery proximal position)Within 5mm of ground truthMean distance 2.47mm
    Landmark identification (Renal arteries distal position)Within 5mm of ground truthMean distance 3.51mm
    Diameters and Lengths (after Analyst review and correction)
    Length (Mean absolute error)≤ 6.0mm
    Renal artery to aortic bifurcation lengthN/A5.3 mm (Mean absolute error)
    Renal artery to left iliac bifurcation lengthN/A7.0mm (Mean absolute error)
    Renal artery to right iliac bifurcation lengthN/A6.6mm (Mean absolute error)
    Diameter (Mean absolute error)≤ 2.3mm
    Aortic wall max diameterN/A2.0 mm (Mean absolute error)
    Aortic wall at renal artery diameterN/A2.1 mm (Mean absolute error)
    Aortic wall at left iliac bifurcation diameterN/A1.9mm (Mean absolute error)
    Aortic wall at right iliac bifurcation diameterN/A2.5 mm (Mean absolute error)
    Volumes (using analyst revised segmentations)
    Volume (Mean absolute error)≤ 1.8 mL
    Volume of the WallN/A0.00242 mL (Mean absolute error)
    Volume of the LumenN/A0.00257 mL (Mean absolute error)

    Explanation for Lengths and Diameters that did not meet initial criteria:
    For the following measurements which did not meet the initial acceptance criteria:

    • Length: renal to left iliac bifurcation (7.0mm vs ≤ 6.0mm)
    • Length: renal to right iliac bifurcation (6.6mm vs ≤ 6.0mm)
    • Diameter: wall right iliac (2.5mm vs ≤ 2.3mm)

    A Mean Pairwise Absolute Difference (MPAD) comparison was performed. The device-expert MPAD was smaller than the expert-expert MPAD in all three cases, indicating that the device's measurements were more consistent with experts than the experts were with each other.

    MeasurementExpert-expert MPADDevice-expert MPAD
    Length: renal to left iliac bifurcation7.1mm6.9mm
    Length: renal to right iliac bifurcation10.4mm9.6mm
    Diameter: wall right iliac2.7mm2.5mm

    Study Details for Device Performance Evaluation:

    1. Sample size used for the test set and the data provenance:

      • Auto-segmentation masks and Landmark Identification: The document does not explicitly state the sample size for this specific test, but it mentions using "clinical data, including aortic aneurysm cases from both US and Canadian clinical centers."
      • Diameters and Lengths: The document does not explicitly state the sample size for this specific test, but it mentions using "clinical data, including aortic aneurysm cases from both US and Canadian clinical centers."
      • Volumes: 40 CT scans. The data provenance is "clinical data, including aortic aneurysm cases from both US and Canadian clinical centers." The studies were retrospective, as they involved existing clinical data.
    2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:

      • Auto-segmentation masks and Landmark Identification: 3 US-based board-certified Radiologists.
      • Diameters and Lengths: 3 US-based board-certified Radiologists.
      • Volumes: The ground truth for volumes was established using a reference device (Simpleware ScanIP Medical), not directly by human experts, although the input segmentations for both the device and the reference device were analyst-revised.
    3. Adjudication method for the test set:

      • Auto-segmentation masks and Landmark Identification: Ground truth was "annotations approved by 3 US-based board-certified Radiologists." This implies consensus or a primary reader with adjudication, but the exact method (e.g., 2+1, 3+1) is not specified.
      • Diameters and Lengths: Ground truth was "annotations from 3 US-based board-certified Radiologists." Similar to above, the specific consensus method is not detailed.
      • Volumes: Ground truth was established by a reference device, Simpleware ScanIP Medical.
    4. If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance:

      • No MRMC comparative effectiveness study was explicitly mentioned in the provided text. The testing focused on the standalone performance of the AI-powered components and the consistency of the device's measurements with expert annotations, not on human reader improvement with AI assistance.
    5. If a standalone (i.e., algorithm only without human-in-the loop performance) was done:

      • Yes, a standalone performance evaluation of the auto-masking algorithm (prior to analyst correction) was performed for auto-segmentation masks and landmark identification. The results demonstrated the performance of the auto-masking algorithm "independently of human intervention."
      • However, for diameters and lengths, the measurements were "based on segmentations that underwent Analyst review and correction, ensuring that the verification reflects real-world use conditions." This suggests a semi-automatic, human-in-the-loop performance evaluation for these specific metrics.
    6. The type of ground truth used (expert concensus, pathology, outcomes data, etc):

      • Expert Consensus: Used for auto-segmentation masks, landmark identification, diameters, and lengths. The consensus involved 3 US-based board-certified Radiologists.
      • Reference Device: Used for volumes, comparing against results from Simpleware ScanIP Medical.
    7. The sample size for the training set:

      • The document does not explicitly state the sample size for the training set. It mentions "critical algorithms were verified by comparing their outputs to ground truth data to ensure accuracy and reliability. Algorithms were first verified using synthetic data...Subsequent verification was performed using clinical data, including aortic aneurysm cases from both US and Canadian clinical centers." This refers to verification data, not necessarily the training data size.
    8. How the ground truth for the training set was established:

      • The document does not provide details on how the ground truth for the training set was established. It only describes the ground truth for the verification/test sets. It can be inferred that similar expert review or other validated methods would have been used for training data, but this is not explicitly stated.
    Ask a Question

    Ask a specific question about this device

    Page 1 of 1