Search Results
Found 2 results
510(k) Data Aggregation
(121 days)
EnSite X EP System, Advisor VL Circular Mapping Catheter, Sensor Enabled, Advisor FL Circular Mapping
EnSite™ X EP System: The EnSite™ X EP System is a suggested diagnostic tool in patients for whom electrophysiology studies have been indicated. The EnSite™ X EP System provides information about the electrical activity of the heart and displays catheter location during conventional electrophysiological (EP) procedures.
EnSite™ X EP System Contact Force Software License: When used with the TactiSys™ Quartz Equipment, the EnSite™ X EP System Contact Force Module is intended to provide visualization of force information from compatible catheters.
EnSite™ X EP System Surface Electrode Kit: The EnSite™ X EP Surface Electrode Kit is indicated for use with the EnSite™ in accordance with the EnSite™ X EP System indications for use.
Advisor™ VL Circular Mapping Catheter, Sensor Enabled™: Advisor™ VL Circular Mapping Catheter, Sensor Enabled™ is a steerable electrophysiology catheter with integrated sensors. The catheter is used for recording intracardiac stimulation during diagnostic electrophysiology studies. The cather can be used to map the atrial regions of the heart.
Advisor™ FL Circular Mapping Catheter, Sensor Enabled™: The Advisor™ FL Circular Mapping Catheter, Sensor Enabled™ is steerable electrophysiology catheter with integrated sensors. The catheter is used for recording intracardiac stimulation during diagnostic electrophysiology studies. The catheter can be used to map the atrial regions of the heart.
Advisor™ HD High Density Mapping Catheter, Sensor Enabled™: The Advisor™ HD Grid Mapping Catheter, Sensor Enabled™, is indicated for multiple electrophysiological mapping of cardiac structures in the heart, i.e., recording or stimulation only. This catheter is intended to obtain electricular regions of the heart.
The EnSite™ X EP System is a catheter navigation and mapping system. A catheter navigation and mapping system is capable of displaying the 3-dimensional (3-D) position of conventional and Sensor Enabled™ (SE) electrophysiology catheters, as well as displaying cardiac electrical activity as waveform traces and as three-dimensional (3D) isopotential and isochronal maps of the cardiac chamber.
The contoured surfaces of the 3D maps are based on the anatomy of the patient's own cardiac chamber. The system creates a model by collecting and labeling the anatomic locations within the chamber. A surface is created by moving a selected catheter to locations within a cardiac structure. As the catheter moves, points are collected at and between all electrodes on the catheter. A surface is wrapped around the outermost points.
Advisor™ VL Circular Mapping Catheter, Sensor Enabled™ (Advisor VL) is a variable radius, circular mapping catheter. It has an adjustable 4 French (F) distal loop size with a diameter ranging from 15mm - 25mm with models containing both ten (10) equidistant or twenty (20) paired platinum-iridium electrodes. The catheter has integrated sensors with two impedance-based navigational electrodes and two magnetic sensors located at the distal end of the shaft. The catheter is intended to be used with the EnSite Precision™ Cardiac Mapping System, or the EnSite™ X EP System.
Advisor™ FL Circular Mapping Catheter, Sensor Enabled™ (Advisor FL, SE) is a circular mapping catheter for performing electrophysiology mapping procedures and providing pacing signals to the heart during electrophysiology procedures. The catheter handle and shaft design allows for improved maneuverability. A magnetic sensor in the distal shaft pocket provides compatibility with visualization and navigation systems. The catheter is compatible with Abbott's EnSite Precision™ Cardiac Mapping System, MediGuide™ System, or EnSite™ X EP System.
The Advisor™ HD Grid Mapping Catheter, Sensor Enabled™, is a sterile, single use, irrigated, high-density mapping catheter with a 7.5F shaft and an 8F distal shaft deflectable section. It is available in a D-F bi-directional curve model that is deflected using the actuator located on the catheter handle. The catheter working length is 110 cm. The device consists of a paddle-shaped distal tip with 16 electrodes, two distal shaft ring electrodes, two magnetic sensors, polymer braided shaft, handle, fluid lumen extension with a luer, and an electrical connector. The catheter also has an introducer tool intended to compress and guide the distal paddle into, and withdraw from, the hemostasis valve of an introducer sheath. The catheter is compatible with the EnSite™ Velocity, EnSite Precision™, and EnSite™ X EP Cardiac Mapping Systems and other accessories, including the connecting cable and commercially available irrigation pumps.
The provided FDA 510(k) summary (K202066) focuses on the substantial equivalence of the EnSite X EP System and associated catheters to previously cleared predicate devices. It largely relies on the similar intended use, indications for use, fundamental scientific technology, and performance of the subject devices compared to the predicate devices. The primary change described is compatibility with the EnSite™ X EP System and updated labeling.
However, the document does not contain specific acceptance criteria, reported device performance metrics, or details of a study structured to prove the device meets pre-defined acceptance criteria in the manner that would be expected for a novel AI/ML diagnostic device with a specific performance claim (e.g., sensitivity, specificity for a disease).
Instead, the non-clinical testing summary focuses on design verification activities, compliance with industry standards, and in vivo preclinical studies to evaluate substantial equivalence, and human factors evaluations. This suggests that the "acceptance criteria" here are more about demonstrating that the new system and its components function as intended and do not raise new questions of safety or effectiveness compared to the predicate(s).
Given this context, I will extract the information available and note where specific details regarding AI/ML performance studies or traditional clinical performance metrics are not present, as they do not appear to be the primary focus of this 510(k).
Acceptance Criteria and Study for K202066
1. Table of Acceptance Criteria and Reported Device Performance
As mentioned, this 510(k) does not present performance in terms of specific diagnostic metrics (e.g., sensitivity, specificity, accuracy) with numerical acceptance criteria. Instead, the "acceptance criteria" are implied by successful completion of design verification activities, adherence to standards, and performance in preclinical studies demonstrating substantial equivalence to predicate devices. The reported device performance generally refers to its ability to function as intended and similar to predicate devices.
Acceptance Criterion (Implied) | Reported Device Performance |
---|---|
Safe and effective operation of the EnSite™ X EP System. | Demonstrated through design verification, software verification, performance testing, and in vivo preclinical studies. |
Compliance with relevant industry guidance and standards (e.g., IEC 62304, ISO 14971). | Confirmed through adherence to listed standards and guidance documents. |
Functional performance of each device in the EnSite™ X EP System (e.g., functional, shipment). | Met through specific performance testing. |
Accuracy of catheter position and orientation (similar to predicate). | Demonstrated through bench and in-vivo preclinical data comparing subject, predicate, and reference devices. |
Proper functioning of cardiac mapping and model creation (similar to predicate). | Demonstrated through bench and in-vivo preclinical data comparing subject, predicate, and reference devices. |
Compatibility of Sensor Enabled™ Catheters with the EnSite™ X EP System. | Confirmed via labeling updates and EEPROM functional tests. |
User interface usability as intended by defined user groups. | Verified through Human Factors Evaluations. |
No new questions of safety or effectiveness are raised compared to predicate devices. | Concluded based on predicate comparison and non-clinical testing results. |
2. Sample Size Used for the Test Set and Data Provenance
The document mentions "In vivo Preclinical Studies" for the EnSite™ X EP System and Sensor Enabled™ Catheters. However, it does not specify the sample size (e.g., number of patients, cases, or animal subjects) used for these studies, nor does it explicitly state the country of origin or whether the data was retrospective or prospective. The term "preclinical" typically refers to animal studies rather than human clinical data.
3. Number of Experts Used to Establish the Ground Truth for the Test Set and Qualifications
The document does not specify the use of experts to establish ground truth for a test set in the context of diagnostic interpretation. The studies described are more focused on the functional performance and substantial equivalence of the hardware and software components rather than a diagnostic accuracy study requiring expert human interpretation as ground truth.
4. Adjudication Method for the Test Set
Since the document does not describe a diagnostic study requiring expert interpretation or ground truth establishment in a clinical sense, there is no mention of an adjudication method (e.g., 2+1, 3+1).
5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study
The document does not indicate that an MRMC comparative effectiveness study was done. The focus is on demonstrating that the device itself performs comparably to predicate devices, which may include functional performance in in-vivo settings, but not a study of human readers' performance with and without AI assistance for improving diagnostic outcomes.
6. Standalone (Algorithm Only Without Human-in-the-Loop Performance) Study
While the EnSite™ X EP System performs functions involving data processing ("programmable diagnostic computer"), the K202066 submission does not present it as a standalone AI/ML diagnostic algorithm with specific performance metrics (e.g., sensitivity, specificity) proven in a standalone study. The system provides "information about the electrical activity of the heart and displays catheter location" and "visualization of force information." The testing described confirms the system's functional integrity and similarity to predicate devices, rather than a standalone diagnostic performance claim often associated with AI/ML algorithms.
7. Type of Ground Truth Used
For the "in vivo Preclinical Studies" and bench testing, the ground truth would likely be based on:
- Physical measurements and established physiological parameters: For evaluating catheter position, orientation, and electrical activity recording accuracy.
- Comparison to predicate device performance: Demonstrating similar outputs and behavior.
- Engineering specifications and design requirements: For functional tests of hardware and software components.
There is no mention of "pathology" or "outcomes data" being used as ground truth for the evaluations described.
8. Sample Size for the Training Set
The document does not provide any information regarding a training set size. This indicates that the regulatory submission is likely not for a device that relies on continuously learning or adaptive AI/ML algorithms that require specific training data sets in the typical sense. The "software verification" and "system level" testing suggest traditional software development and testing, rather than a machine learning model's training and validation.
9. How the Ground Truth for the Training Set Was Established
Since there is no mention of a training set or a machine learning component requiring one, there is no information provided on how ground truth for a training set was established.
Ask a specific question about this device
(49 days)
Advisor VL Circular Mapping Catheter, Sensor Enabled
The Advisor VL Circular Mapping Catheter, Sensor Enabled is a steerable electrophysiology catheter with integrated sensors. The catheter is used for recording intracardiac signals and cardiac stimulation during diagnostic electrophysiology studies. The catheter can be used to map the atrial regions of the heart.
Advisor VL Circular Mapping Catheter, Sensor Enabled (Advisor VL) is a variable radius, circular mapping catheter. It has an adjustable 4 French (F) distal loop size with a diameter ranging from 15mm – 25mm with models containing both ten (10) equidistant or twenty (20) paired platinum-iridium electrodes. The catheter has integrated sensors with two impedance-based navigational electrodes and two magnetic sensors located at the distal end of the shaft. The catheter is intended to be used with the EnSiteTM PrecisionTM Cardiac Mapping System.
The provided text describes the 510(k) premarket notification for the "Advisor™ VL Circular Mapping Catheter, Sensor Enabled™". This device is an electrophysiology catheter used for recording intracardiac signals and cardiac stimulation during diagnostic electrophysiology studies, specifically for mapping atrial regions of the heart.
Based on the document, this is not an AI/ML medical device submission. The submission focuses on demonstrating substantial equivalence to a predicate device (Advisor FL, Circular Mapping Catheter, Sensor Enabled K160335) through extensive non-clinical testing (bench and animal testing). There is no mention of an AI algorithm, a test set for AI performance, human expert readings, or any of the typical criteria associated with AI/ML device evaluations.
Therefore, I cannot provide the requested information regarding acceptance criteria and a study proving an AI/ML device meets those criteria, as this document does not pertain to such a device.
To directly address the specific points of your request:
- A table of acceptance criteria and the reported device performance: This document lists various non-clinical tests performed (e.g., Patient Leakage, Dielectric Strength, Biocompatibility, Functional Simulated Use, etc.) and states that the device "met the pre-determined acceptance criteria." It does not provide a detailed table with specific acceptance values and corresponding reported performance values for each test. This type of detailed data is typically found in the full 510(k) submission, not the summary.
- Sample sized used for the test set and the data provenance: Not applicable for an AI/ML device. For the non-clinical tests, sample sizes for specific bench or animal tests are not detailed in this summary.
- Number of experts used to establish the ground truth for the test set and the qualifications of those experts: Not applicable, as no AI model's performance on human expert-labeled data is being evaluated.
- Adjudication method (e.g. 2+1, 3+1, none) for the test set: Not applicable.
- If a multi reader multi case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance: Not applicable.
- If a standalone (i.e. algorithm only without human-in-the-loop performance) was done: Not applicable.
- The type of ground truth used (expert concensus, pathology, outcomes data, etc): Not applicable in the context of an AI/ML model's ground truth. Ground truth for this device would refer to the true physical/electrical properties measured during bench and animal testing.
- The sample size for the training set: Not applicable (no AI training involved).
- How the ground truth for the training set was established: Not applicable (no AI training involved).
In summary, the provided document details the regulatory clearance of a physical medical device (a cardiac catheter) based on a comparison to a predicate device and extensive non-clinical testing, not an AI/ML diagnostic or therapeutic device.
Ask a specific question about this device
Page 1 of 1