Search Results
Found 1 results
510(k) Data Aggregation
K Number
K230197Device Name
BoneMRI v1.6
Manufacturer
Date Cleared
2023-02-22
(28 days)
Product Code
Regulation Number
892.2050Why did this record match?
Applicant Name (Manufacturer) :
MRIguidance B.V.
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdparty
Intended Use
BoneMRI is an image processing software that can be used for image enhancement in MRI images. It can be used to visualize the bone structures in MRI images with enhanced contrast with surrounding soft tissue. It is to be used in the pelvic region, which includes the bony anatomy of the sacrum, hip bones and femoral heads; and the lumbar spine region, which includes the bony anatomy of the vertebrae from L3 to S1. BoneMRI is not to be used for diagnosis or monitoring of (primary or metastatic) tumors.
Warning: BoneMRI images are not intended to replace CT images.
Device Description
The BoneMRI application is a standalone image processing software application that analyses 3D gradient echo MRI scans acquired with a dedicated MRI scan protocol. From the analysis, 3D tomographic radiodensity contrast images, called BoneMRI images, are constructed.
The BoneMRI images can be used to visualize the bone structures in MR images with enhanced contrast with respect to the surrounding soft tissue. The application is designed to be used by imaging experts, such as radiologists or orthopedic surgeons, typically in a physician's office.
The BoneMRI application is a server application running on the clinic or hospital networks. It is available as fully on-premise software with specific GPU hardware requirements, or partly running as a managed service, for which the environment in which the managed modules run is controlled by MRIquidance, but the managed service will not receive protected health information (PHI). Within the hospital network, the application communicates with a DICOM compatible imaging archive (e.g., a PACS) to receive input MRI and to return BoneMRI images. Reading of the resulting BoneMRI images is performed using reqular DICOM compatible medical imaging viewing software.
The application uses an algorithm to detect bone images from MRIs obtained using a specific acquisition sequence. The algorithm training sets included information from multiple clinical sites, multiple anatomies, and multiple scanners to ensure that the trained algorithm was robust with respect to the approved indications for use. None of the data used in the training dataset was used subsequently in the validation dataset.
Ask a Question
Ask a specific question about this device
Page 1 of 1