Search Results
Found 1 results
510(k) Data Aggregation
K Number
K171049Device Name
Real Time Image Gating System for Proton Beam Therapy Systems
Manufacturer
Hitachi, Ltd. Healthcare
Date Cleared
2017-12-26
(263 days)
Product Code
LHN
Regulation Number
892.5050Why did this record match?
Applicant Name (Manufacturer) :
Hitachi, Ltd. Healthcare
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP Authorized
Intended Use
The Real Time Image Gating System for Proton Beam Therapy Systems is intended for use with compatible Hitachi proton beam therapy systems and is designed to generate gating signals to deliver a proton beam when the position of a fiducial marker, which is implanted near a tumor and tracked by use of X-ray fluoroscopy, is within a given tolerance from its planned position.
Device Description
The Real-time Image Gating System for proton beam therapy (RGS) is a gating signal generator accessory to proton beam therapy systems (PBTS) and used to track an implanted fiducial and to control the proton beam. The RGS is installed on the PBTS workstation and receives information from the PBTS imaging systems, processes the images, and sends timing signals to the PBTS irradiation controller. This RGS system recognizes the position of a fiducial marker in the human body at a regular frame rate using the X-ray imaging systems. The marker is implanted near the tumor using image guided implantation. Using two diagnostic X-ray sources and two X-ray FPDs configured around the treatment isocenter, the imaging data are combined to obtain precise 3D trajectories in the RGS. The RGS tracks the implanted marker on the image, and this chosen marker's position viewed in 3 dimensions. Using X-ray fluoroscopy devices in two distinct planes, the location of marker on the fluoroscopic image is automatically extracted using the pattern recognition technology of the RGS and the spatial position of the marker is calculated and monitored throughout the treatment. Synchronized irradiation of the tumor with gating control occurs only when the marker is within a given tolerance from its planned coordinates relative to the beam isocenter. This synchronized irradiation is performed at high speed which enables accurate irradiation of a tumor whose position may move inside the body, e.g., due to respiration.
Ask a Question
Page 1 of 1