Search Results
Found 1 results
510(k) Data Aggregation
(570 days)
Dental Wings GmbH
coDiagnostiX is an implant planning and surgery planning software tool intended for use by dental professionals who have appropriate knowledge in the field of application. The software reads imaging information output from medical scanners such as CBCT or CT scanners.
It is indicated for pre-operative simulation and evaluation of patient anatomy, dental implant placement, surgical instrument positioning, and surgical treatment options, in edentulous, partial edentulous or dentition situations, which may require a surgical guide. It is further indicated for the user to design such guides for, alone or in combination, the guiding of a surgical path along a trajectory or a profile, or to help evaluate a surgical preparation or step.
coDiagnostiX software allows for surgical guide export to a validated manufacturing center or to the point of care. Manufacturing at the point of care requires a validated process using CAM equipment (additive manufacturing system, including software and associated tooling) and compatible material (biocompatible and sterilizable). A surgical guide may require to be used with accessories.
The main uses and capabilities of the coDiagnostiX software are unchanged from the primary predicate version.
As in the primary predicate version, it is a software for dental surgical treatment planning. It is designed for the evaluation and analysis of 3-dimensional datasets and the precise image-guided and reproducible preoperative planning of dental surgeries.
The first main steps in its workflow include the patient image data being received from CBCT (Cone Beam Computed Tomography) or CT. The data in DICOM format is then read with the coDiagnostiX DICOM transfer module according to the standard, converted into 3-dimensional datasets and stored in a database.
The pre-operative planning is performed by the computation of several views (such as a virtual Orthopantomogram or a 3-dimensional reconstruction of the image dataset), by the analysis of the image data, and the placement of surgical items (i.e. sleeves, implants) upon the given views. The pre-operative planning is then followed as decided by the design of a corresponding surgical guide that reflects the assigned placement of the surgical items.
Additional functions are available to the user for refinement of the preoperative planning, such as:
- · Active measurement tools, length and angle, for the assessment of surgical treatment options:
- · Nerve module to assist in distinguishing the nervus mandibularis canal;
- 3D sectional views through the jaw for fine adjustment of surgical treatment options; .
- Segmentation module for coloring several areas inside the slice dataset, e.g., jawbone, . native teeth, or types of tissue such as bone or skin, and creating a 3D reconstruction for the dataset;
- Parallelizing function for the adjustment of adjacent images; and
- · Bone densitometry assessment, with a density statistic in areas of interest.
All working steps are automatically saved to the patient file may contain multiple surgical treatment plan proposals which allows the user to choose the ideal surgical treatment plan. The output file of the surgical guide and/or the guided surgical is then generated from the final surgical treatment plan.
coDiagnostiX software allows for surgical guide export to a validated manufacturing center or to the point of care. Manufacturing at the point of care requires a validated process using CAM equipment (additive manufacturing system, including software and associated tooling) and compatible material (biocompatible and sterilizable). A surgical quide may require to be used with accessories.
The provided document is a 510(k) Premarket Notification from the FDA for the coDiagnostiX dental implant planning and surgery planning software. It details the device's indications for use, comparison to predicate/reference devices, and non-clinical performance data used to demonstrate substantial equivalence.
However, the document does not contain specific acceptance criteria for a device's performance (e.g., accuracy metrics or thresholds), nor does it describe a comparative study that proves the device meets such criteria with detailed quantitative results. The section on "Non-Clinical Performance Data" broadly discusses verification and validation, but lacks the granular data requested.
Therefore, many of the requested points cannot be answered from the provided text.
Here's an attempt to answer based on the available information, noting where information is absent:
Device: coDiagnostiX (K193301)
1. Table of Acceptance Criteria and Reported Device Performance
Information Not Provided in Document: The document does not specify quantitative acceptance criteria or provide a table of reported device performance metrics against such criteria. It states that "The acceptance criteria are met" for sterilization validation and "Expected results are met" for process performance qualifications, but does not provide details on what those criteria or results actually were.
2. Sample Size and Data Provenance for Test Set
Information Not Provided in Document: The document mentions "software verification and validation" and "Biocompatibility testing" but does not specify sample sizes for any test sets (e.g., number of patient scans, number of manufactured guides). There is also no explicit mention of data provenance (e.g., country of origin, retrospective/prospective collection).
3. Number and Qualifications of Experts for Ground Truth Establishment
Information Not Provided in Document: The document states "software verification and validation is conducted to assure requirements and specifications as well as risk mitigations (design inputs) are correctly and completely implemented and traceable to design outputs." However, it does not specify if experts were involved in establishing ground truth for a test set, their number, or their qualifications. The device is intended for "dental professionals who have appropriate knowledge in the field of application."
4. Adjudication Method for Test Set
Information Not Provided in Document: No information regarding an adjudication method (e.g., 2+1, 3+1, none) for a test set is provided.
5. Multi-Reader Multi-Case (MRMC) Comparative Effectiveness Study
Information Not Provided in Document: The document focuses on demonstrating substantial equivalence primarily through technological characteristics and non-clinical data, rather than through an MRMC comparative effectiveness study involving human readers. There is no mention of such a study or an effect size for human reader improvement with AI assistance.
6. Standalone (Algorithm Only) Performance Study
Information Not Provided in Document: While the document refers to "software verification and validation" to demonstrate that "the software performs as intended" and "the base accuracy is identical as compared to the predicate device," it does not provide details of a standalone (algorithm only) performance study with specific metrics, such as sensitivity, specificity, or accuracy values. It implies the software's capabilities (CAD type, image sources, output files) are unchanged from the predicate, and therefore its base accuracy is "identical."
7. Type of Ground Truth Used
Information Not Provided in Document: The document does not specify the type of ground truth used for any testing. It mentions "evaluation and analysis of 3-dimensional datasets" from CBCT or CT scans, but not how ground truth (e.g., for specific anatomical features, surgical path accuracy, etc.) was established for validation purposes.
8. Sample Size for Training Set
Information Not Provided in Document: The document does not provide any information about a training set or its sample size. This is a 510(k) submission primarily comparing the device to a predicate, not detailing the development or training of an AI algorithm from scratch. The changes described are primarily feature expansions to an existing software.
9. How Ground Truth for Training Set Was Established
Information Not Provided in Document: As no information on a training set is provided, there is no information on how its ground truth was established.
Summary of Document's Approach to Meeting Requirements:
The document primarily relies on demonstrating substantial equivalence to an existing predicate device (K130724 coDiagnostiX Implant Planning Software) and reference devices rather than presenting a de novo performance study with specific acceptance criteria and detailed quantitative results.
The key arguments for substantial equivalence are:
- The device has the "same intended use" as the primary predicate device.
- It has "similar technological characteristics" (software, interface, inputs, outputs are either identical or considered similar with addressed impacts).
- Changes are described as "feature expansions" and "minor updates" to an existing, cleared software.
- Non-clinical data, including software verification and validation, biocompatibility testing, sterilization validation, and manufacturing process qualifications, are stated to have met acceptance criteria and demonstrated that the device "performs as intended" and is "safe and effective."
The non-clinical data section broadly implies that the software's core accuracy functions are maintained from the predicate device, since its fundamental CAD capabilities, image sources, and output file functions are unchanged. The new features ("planning of a surgical path along a trajectory," "planning of a surgical path along a profile," and "planning to help evaluate surgical preparation or step") are leveraged from the predicate's general implant planning and surgical planning indications. The document asserts that these changes "do not change the intended use or the applicable fundamental technology, and do not raise any new questions of safety or effectiveness."
Ask a specific question about this device
Page 1 of 1