K Number
K230096
Device Name
Genius AI Detection 2.0 with CC-MLO Correlation
Manufacturer
Date Cleared
2023-05-23

(130 days)

Product Code
Regulation Number
892.2090
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdparty
Intended Use
Genius AI Detection is a computer-aided detection and diagnosis (CADe/CADx) software device intended to be used with compatible digital breast tomosynthesis (DBT) systems to identify and mark regions of interest including soft tissue densities (masses, architectural distortions and asymmetries) and calcifications in DBT exams from compatible DBT systems and provide confidence scores that offer assessment for Certainty of Findings and a Case Score. The device intends to aid in the interpretation of digital breast tomosynthesis exams in a concurrent fashion, where the interpreting physician confirms or dismisses the findings during the reading of the exam.
Device Description
Genius AI Detection is a software device intended to identify potential abnormalities in breast tomosynthesis images. Genius Al Detection analyzes each standard mammographic view in a digital breast tomosynthesis examination using deep learning networks. For each detected lesion, Genius AI Detection produces CAD results that include the location of the lesion, an outline of the lesion and a confidence score for that lesion. Genius Al Detection also produces a case score for the entire tomosynthesis exam. Genius Al Detection packages all CAD findings derived from the corresponding analysis of a tomosynthesis exam into a DICOM Mammography CAD SR object and distributes it for display on DICOM compliant review workstations. The interpreting physician will have access to the CAD findings concurrently to the reading of the tomosynthesis exam. In addition, a combination of peripheral information such as number of marks and case scores may be used on the review workstation to enhance the interpreting physician's workflow by offering a better organization of the patient worklist. The Genius Al Detection 2.0 now added the CC-MLO Correlation feature. The added feature provides the ability to correlate a suspected lesion in one view with a like finding in the other view and additionally provides a workflow and navigation feature for the interpreting physician.
More Information

Yes
The document explicitly states that the device uses "deep learning networks" and "machine learning" for image analysis and detection.

No
This device is a diagnostic aid, intended to help interpreting physicians identify regions of interest in breast tomosynthesis exams, not to provide therapy.

Yes

The "Intended Use / Indications for Use" section explicitly states that the device is "a computer-aided detection and diagnosis (CADe/CADx) software device." It also mentions its purpose is to "aid in the interpretation of digital breast tomosynthesis exams," which is a diagnostic activity.

Yes

The device description explicitly states "Genius AI Detection is a software device intended to identify potential abnormalities in breast tomosynthesis images." It analyzes existing images and outputs a DICOM object, indicating it is a software-only tool that processes data from a separate hardware imaging system.

Based on the provided text, this device is not an IVD (In Vitro Diagnostic).

Here's why:

  • IVD Definition: In vitro diagnostics are tests performed on samples such as blood, urine, or tissue that have been taken from the human body to detect diseases or other conditions.
  • Device Function: The description clearly states that Genius AI Detection is a software device that analyzes digital breast tomosynthesis images. It processes medical images to aid in the detection and diagnosis of potential abnormalities within the breast.
  • No Biological Samples: The device does not interact with or analyze any biological samples taken from the patient. Its input is imaging data.

Therefore, while it is a medical device used for diagnosis, it falls under the category of medical imaging software rather than an in vitro diagnostic device.

No
The letter does not explicitly state that the FDA has reviewed and approved or cleared a PCCP for this specific device.

Intended Use / Indications for Use

Genius AI Detection is a computer-aided detection and diagnosis (CADe/CADx) software device intended to be used with compatible digital breast tomosynthesis (DBT) systems to identify and mark regions of interest including soft tissue densities (masses, architectural distortions and asymmetries) and calcifications in DBT exams from compatible DBT systems and provide confidence scores that offer assessment for Certainty of Findings and a Case Score. The device intends to aid in the interpretation of digital breast tomosynthesis exams in a concurrent fashion, where the interpreting physician confirms or dismisses the findings during the reading of the exam.

Product codes (comma separated list FDA assigned to the subject device)

QDQ

Device Description

Genius AI Detection is a software device intended to identify potential abnormalities in breast tomosynthesis images. Genius Al Detection analyzes each standard mammographic view in a digital breast tomosynthesis examination using deep learning networks. For each detected lesion, Genius AI Detection produces CAD results that include the location of the lesion, an outline of the lesion and a confidence score for that lesion. Genius Al Detection also produces a case score for the entire tomosynthesis exam.

Genius Al Detection packages all CAD findings derived from the corresponding analysis of a tomosynthesis exam into a DICOM Mammography CAD SR object and distributes it for display on DICOM compliant review workstations. The interpreting physician will have access to the CAD findings concurrently to the reading of the tomosynthesis exam. In addition, a combination of peripheral information such as number of marks and case scores may be used on the review workstation to enhance the interpreting physician's workflow by offering a better organization of the patient worklist.

The Genius Al Detection 2.0 now added the CC-MLO Correlation feature. The added feature provides the ability to correlate a suspected lesion in one view with a like finding in the other view and additionally provides a workflow and navigation feature for the interpreting physician.

Mentions image processing

Yes

Mentions AI, DNN, or ML

Yes

Input Imaging Modality

Digital breast tomosynthesis slices

Anatomical Site

Breast

Indicated Patient Age Range

Not Found

Intended User / Care Setting

MQSA-Qualified Interpreting Physicians and Radiologists

Description of the training set, sample size, data source, and annotation protocol

Not Found

Description of the test set, sample size, data source, and annotation protocol

The dataset used for this standalone evaluation of the CC-MLO Correlation feature is the same dataset used for the standalone evaluation of the detection performance of Genius Al Detection 2.0 (clearance K221449). This evaluation included 106 biopsy proven malignant cases and 561 screening negative cases.

The 106 biopsied malignant cases included lesions that were marked by an expert radiologist by generating ground truth marks and truth pairs on both orthogonal views (CC and MLO). Each case in this set contained 4 standard mammographic views.

There were 239 individual truth marks in the 106 malignant cases that were analyzed for this evaluation. 226 of those truth marks came from 113 truth pairs which included the lesions that were linked by the radiologist after identifying them on both views.

In addition, the detection pairs generated by the CC-MLO correlation feature on 658 screening negative and biopsied benign cases were reviewed by an expert radiologist.

Summary of Performance Studies (study type, sample size, AUC, MRMC, standalone performance, key results)

Standalone Performance Testing:
Genius AI Detection 2.0 with CC-MLO Correlation is a software-only device. The level of concern for the device is determined as Moderate Level of Concern.

Verification testing consisted of software validation testing, software integration testing and software system testing. The verification testing showed that the software application satisfied the software requirements.

Standalone evaluation testing was also conducted. The dataset used for this standalone evaluation of the CC-MLO Correlation feature is the same dataset used for the standalone evaluation of the detection performance of Genius Al Detection 2.0 (clearance K221449). This evaluation included 106 biopsy proven malignant cases and 561 screening negative cases.

The 106 biopsied malignant cases included lesions that were marked by an expert radiologist by generating ground truth marks and truth pairs on both orthogonal views (CC and MLO). Each case in this set contained 4 standard mammographic views.

There were 239 individual truth marks in the 106 malignant cases that were analyzed for this evaluation. 226 of those truth marks came from 113 truth pairs which included the lesions that were linked by the radiologist after identifying them on both views.

In addition, the detection pairs generated by the CC-MLO correlation feature on 658 screening negative and biopsied benign cases were reviewed by an expert radiologist.

The performance of the CC-MLO Correlation feature is evaluated by looking at different subgroups including biopsied malignant cases and negative cases. The accuracy of the CC-MLO Correlation feature was estimated in both groups by scoring the detection pairs against the truth pairs and by evaluating the expert radiologist's response, respectively.

Based on results of the verification and evaluation tests, it is concluded that the Genius AI Detection 2.0 with CC-MLO correlation device is safe and effective in detecting soft tissue lesions and calcification lesions and correlating the CC-MLO findings in tomosynthesis exams acquired with Hologic's 3D Mammography systems.

Key Metrics (Sensitivity, Specificity, PPV, NPV, etc.)

Not Found

Predicate Device(s): If the device was cleared using the 510(k) pathway, identify the Predicate Device(s) K/DEN number used to claim substantial equivalence and list them here in a comma separated list exactly as they appear in the text. List the primary predicate first in the list.

K221449

Reference Device(s): Identify the Reference Device(s) K/DEN number and list them here in a comma separated list exactly as they appear in the text.

K221347

Predetermined Change Control Plan (PCCP) - All Relevant Information for the subject device only (e.g. presence / absence, what scope was granted / cleared under the PCCP, any restrictions, etc).

Not Found

§ 892.2090 Radiological computer-assisted detection and diagnosis software.

(a)
Identification. A radiological computer-assisted detection and diagnostic software is an image processing device intended to aid in the detection, localization, and characterization of fracture, lesions, or other disease-specific findings on acquired medical images (e.g., radiography, magnetic resonance, computed tomography). The device detects, identifies, and characterizes findings based on features or information extracted from images, and provides information about the presence, location, and characteristics of the findings to the user. The analysis is intended to inform the primary diagnostic and patient management decisions that are made by the clinical user. The device is not intended as a replacement for a complete clinician's review or their clinical judgment that takes into account other relevant information from the image or patient history.(b)
Classification. Class II (special controls). The special controls for this device are:(1) Design verification and validation must include:
(i) A detailed description of the image analysis algorithm, including a description of the algorithm inputs and outputs, each major component or block, how the algorithm and output affects or relates to clinical practice or patient care, and any algorithm limitations.
(ii) A detailed description of pre-specified performance testing protocols and dataset(s) used to assess whether the device will provide improved assisted-read detection and diagnostic performance as intended in the indicated user population(s), and to characterize the standalone device performance for labeling. Performance testing includes standalone test(s), side-by-side comparison(s), and/or a reader study, as applicable.
(iii) Results from standalone performance testing used to characterize the independent performance of the device separate from aided user performance. The performance assessment must be based on appropriate diagnostic accuracy measures (
e.g., receiver operator characteristic plot, sensitivity, specificity, positive and negative predictive values, and diagnostic likelihood ratio). Devices with localization output must include localization accuracy testing as a component of standalone testing. The test dataset must be representative of the typical patient population with enrichment made only to ensure that the test dataset contains a sufficient number of cases from important cohorts (e.g., subsets defined by clinically relevant confounders, effect modifiers, concomitant disease, and subsets defined by image acquisition characteristics) such that the performance estimates and confidence intervals of the device for these individual subsets can be characterized for the intended use population and imaging equipment.(iv) Results from performance testing that demonstrate that the device provides improved assisted-read detection and/or diagnostic performance as intended in the indicated user population(s) when used in accordance with the instructions for use. The reader population must be comprised of the intended user population in terms of clinical training, certification, and years of experience. The performance assessment must be based on appropriate diagnostic accuracy measures (
e.g., receiver operator characteristic plot, sensitivity, specificity, positive and negative predictive values, and diagnostic likelihood ratio). Test datasets must meet the requirements described in paragraph (b)(1)(iii) of this section.(v) Appropriate software documentation, including device hazard analysis, software requirements specification document, software design specification document, traceability analysis, system level test protocol, pass/fail criteria, testing results, and cybersecurity measures.
(2) Labeling must include the following:
(i) A detailed description of the patient population for which the device is indicated for use.
(ii) A detailed description of the device instructions for use, including the intended reading protocol and how the user should interpret the device output.
(iii) A detailed description of the intended user, and any user training materials or programs that address appropriate reading protocols for the device, to ensure that the end user is fully aware of how to interpret and apply the device output.
(iv) A detailed description of the device inputs and outputs.
(v) A detailed description of compatible imaging hardware and imaging protocols.
(vi) Warnings, precautions, and limitations must include situations in which the device may fail or may not operate at its expected performance level (
e.g., poor image quality or for certain subpopulations), as applicable.(vii) A detailed summary of the performance testing, including test methods, dataset characteristics, results, and a summary of sub-analyses on case distributions stratified by relevant confounders, such as anatomical characteristics, patient demographics and medical history, user experience, and imaging equipment.

0

May 23, 2023

Image /page/0/Picture/1 description: The image shows the logo of the U.S. Food and Drug Administration (FDA). On the left is the Department of Health & Human Services logo. To the right of that is the FDA logo, which is a blue square with the letters "FDA" in white. To the right of the blue square is the text "U.S. FOOD & DRUG ADMINISTRATION" in blue.

Hologic, Inc. % Deborah Thomas Senior Principal Regulatory Affairs 250 Campus Drive MARLBOROUGH MA 01730

Re: K230096

Trade/Device Name: Genius AI Detection 2.0 with CC-MLO Correlation Regulation Number: 21 CFR 892.2090 Regulation Name: Radiological computer assisted detection and diagnosis software Regulatory Class: Class II Product Code: QDQ Dated: April 13, 2023 Received: April 13, 2023

Dear Deborah Thomas:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part

1

801); medical device reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reportingcombination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4. Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-safety/medical-device-reportingmdr-how-report-medical-device-problems.

For comprehensive regulatory information about mediation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medicaldevices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-device-advice-comprehensive-regulatoryassistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Yanna S. Kang -S

Yanna Kang, Ph.D. Assistant Director Mammography and Ultrasound Team DHT8C: Division of Radiological Imaging and Radiation Therapy Devices OHT8: Office of Radiological Health Office of Product Evaluation and Quality Center for Devices and Radiological Health

Enclosure

2

Indications for Use

510(k) Number (if known) K230096

Device Name

Genius AI Detection 2.0 with CC-MLO Correlation

Indications for Use (Describe)

Genius AI Detection is a computer-aided detection and diagnosis (CADe/CADx) software device intended to be used with compatible digital breast tomosynthesis (DBT) systems to identify and mark regions of interest including soft tissue densities (masses, architectural distortions and asymmetries) and calcifications in DBT exams from compatible DBT systems and provide confidence scores that offer assessment for Certainty of Findings and a Case Score. The device intends to aid in the interpretation of digital breast tomosynthesis exams in a concurrent fashion, where the interpreting physician confirms or dismisses the findings during the reading of the exam.

Type of Use (Select one or both, as applicable)

Prescription Use (Part 21 CFR 801 Subpart D)
Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff(@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

3

Traditional 510(k) Summary

This 510(k) Summary is submitted in accordance with the requirements of 21 CFR Part 807.92

Date Prepared:January 12, 2023
Manufacturer:Hologic, Inc.
36 Apple Ridge
Road Danbury, CT
06810 USA
Establishment Registration #:1220984
Contact Person:Deborah Thomas
Senior Principal Regulatory Affairs
P: 508.210.6107

Identification of the Device:

Proprietary/Trade Name:Genius Al Detection 2.0 with CC-MLO Correlation
Classification Name:Radiological Computer Assisted Detection/Diagnosis Software for Lesions Suspicious for Cancer
Regulatory Number:21 CFR 892.2090
Product Code:QDQ
Device Class:Class II
Review Panel:Radiology

Identification of the Legally Marketed Predicate and Reference Devices:

Predicate DeviceGenius Al Detection 2.0
Trade Name:Radiological Computer Assisted Detection/Diagnosis
Classification Name:Software for Lesions Suspicious for Cancer
21 CFR 892.2090
Regulatory Number:QDQ
Product Code:Class II
Device Class:Radiology
Review Panel:Hologic, Inc.
Submitter/510(k)K221449 (cleared October 6, 2022)
Holder: Clearance:
Reference DeviceTranspara 1.7.2
Trade Name:Radiological Computer Assisted Detection/Diagnosis
Classification Name:Software for Lesions Suspicious For Cancer

4

Regulatory Number: Product Code: Device Class: Review Panel: Submitter/510(k) Holder: Clearance:

21 CFR 892.2090 QDQ Class II Radiology ScreenPoint Medical B.V K221347 (cleared August 3, 2022)

Device Description:

Genius AI Detection is a software device intended to identify potential abnormalities in breast tomosynthesis images. Genius Al Detection analyzes each standard mammographic view in a digital breast tomosynthesis examination using deep learning networks. For each detected lesion, Genius AI Detection produces CAD results that include the location of the lesion, an outline of the lesion and a confidence score for that lesion. Genius Al Detection also produces a case score for the entire tomosynthesis exam.

Genius Al Detection packages all CAD findings derived from the corresponding analysis of a tomosynthesis exam into a DICOM Mammography CAD SR object and distributes it for display on DICOM compliant review workstations. The interpreting physician will have access to the CAD findings concurrently to the reading of the tomosynthesis exam. In addition, a combination of peripheral information such as number of marks and case scores may be used on the review workstation to enhance the interpreting physician's workflow by offering a better organization of the patient worklist.

The Genius Al Detection 2.0 now added the CC-MLO Correlation feature. The added feature provides the ability to correlate a suspected lesion in one view with a like finding in the other view and additionally provides a workflow and navigation feature for the interpreting physician.

Indications for Use:

Genius Al Detection is a computer-aided detection and diagnosis (CADe/CADx) software device intended to be used with compatible digital breast tomosynthesis (DBT) systems to identify and mark regions of interest including soft tissue densities (masses, architectural distortions and asymmetries) and calcifications in DBT exams from compatible DBT systems and provide confidence scores that offer assessment for Certainty of Findings and a Case Score. The device intends to aid in the interpretation of digital breast tomosynthesis exams in a concurrent fashion, where the interpreting physician confirms or dismisses the findings during the reading of the exam.

Standards:

  • IEC 62304: 2015 Medical device software Software Life Cycle Processes (#13-79) ●
  • ISO 14971: 2012 – Medical devices – Application of Risk Management to Medical Devices
  • DEN180005 Evaluation of automatic class III designation for OsteoDetect Decision ● summary with special controls.

5

FDA Guidance Documents:

  • Guidance for Industry and FDA Staff Guidance for the Content of Premarket ● Submissions for Software Contained in Medical Devices (Issued on May 11, 2005)
  • Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data –

Premarket Notification [510(k)] Submissions (Issued on July 3, 2012)

  • Guidance for Industry and FDA Staff - Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Approval (PMA) and Premarket Notification [510(k)] Submissions (Issued on January 22, 2020)
  • "Off-the-Shelf Software Use in Medical Devices," issued on September 9, 1999
  • . "Content of Premarket Submissions for Management of Cybersecurity in Medical Devices" issued on October 2, 2014.

| Features and
Characteristics | Subject Device
Hologic, Inc.
Genius Al Detection 2.0
with CC-MLO
Correlation | Predicate
Hologic, Inc.
Genius Al
Detection 2.0 | Reference Device
ScreenPoint
Medical
Transpara 1.7.2 | Difference and
comments |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 510(k) Number | pending | K221449 | K221347 | N/A |
| Regulation
Number/Name | 21 CFR 892.2090 /
Radiological Computer
Assisted Detection and
Diagnosis Software | Same | Same | N/A |
| Product Code | QDQ | Same | Same | N/A |
| Indications
for Use | | Same | | Similar |
| | Genius AI Detection is
a computer-aided
detection and
diagnosis (CADe/CADx)
software device
intended to be used
with compatible digital
breast tomosynthesis
(DBT) systems to
identify and mark
regions of interest
including soft tissue
densities (masses,
architectural
distortions and
asymmetries) and
calcifications in DBT
exams from
compatible DBT
systems and provide
confidence scores that
offer assessment for
Certainty of Findings
and a Case Score.

The device intends to
aid in the
interpretation of
digital breast
tomosynthesis exams
in a concurrent
fashion, where the
interpreting physician
confirms or dismisses
the findings during
the reading of the
exam. | | Transpara
software is
intended for use
as a concurrent
reading aid for
physicians
interpreting
screening full-
field digital
mammography
exams and digital
breast
tomosynthesis
exams from
compatible FFDM
and DBT systems,
to identify
regions
suspicious for
breast cancer and
assess their
likelihood of
malignancy.
Output of the
device includes
locations of
calcifications
groups and soft-
tissue regions,
with scores
indicating the
likelihood that
cancer is present,
and an exam
score indicating
the likelihood
that cancer is
present in the
exam. Patient
management
decisions should
not be made
solely on the
basis of analysis
by Transpara. | |
| Compatible
DBT
Systems | Hologic Selenia
Dimensions
Hologic 3Dimensions
Supports both models
in the following
modes:
• standard
resolution 1-mm
slices
• high resolution 1-
mm slices (Clarity
HD)
high resolution 6-
mm SmartSlices
(3DQuorum) | Same | Giotto FFDM
General Electric DBT
Fujifilm DBT | The predicate
and subject
device include
the support of
the following
modes on the
Hologic DBT
systems only:
• standard res.
1-mm slices
• high res. 1-
mm slices.
• high resolution
6-mm
SmartSlices |
| Type of CAD
Software | Radiological
computer assisted
detection and
diagnostic software. | Same | Same | N/A |
| Mode of Action | Image processing
device utilizing
machine learning to
aid in the detection,
localization, and
characterization of
soft tissue densities
(masses, architectural
distortions, and
asymmetries) and
calcifications in the 1-
mm 3D DBT slices.
Findings are co-
registered to 6-mm
SmartSlices. | Same | Software that applies
algorithms for
recognition of
suspicious
calcifications and soft
tissue lesions to
detect and
characterize findings
in radiological breast
images and provide
information about
the presence,
location, and
characteristics of the
findings to the user. | Similar |
| Clinical
Output | To inform the
primary diagnostic
and patient
management
decisions that are
made by the clinical
user. | Same | Same | N/A |
| Patient
Population | Symptomatic
and
asymptomatic
women
undergoing
mammography | Same | The device is
intended to be used
in the population of
women undergoing
screening
mammography and
digital breast
tomosynthesis. | Similar |
| End Users | MQSA-Qualified
Interpreting
Physicians and
Radiologists | Same | Intended users of
Transpara® are
physicians qualified
to read screening
mammography
exams and digital
breast tomosynthesis
exams. | Similar |
| Image Source
Modalities | Digital breast
tomosynthesis slices | Same | Same | N/A |
| Output Device | Softcopy Workstation | Same | Same | N/A |
| Deployment | Stand-alone computer | Same | Same | N/A |
| Method Of Use | Concurrent read | Same | Same | N/A |
| Visualization
Features | Places mark within
suspicious lesion by
default (Emphasize™;
RightOn™) and reports
confidence of finding
next to each identified
lesion in the image. CAD
display may be toggled
on/off. Option to
automatically zoom into
or contour the suspicious
region of interest
(PeerView™). | Same | Computer aided
detection (CAD)
marks to highlight
locations where the
device
detected suspicious
calcifications or soft
tissue lesions
Decision support is
provided by region
scores on a scale
ranging from 0-100,
with
higher scores
indicating a higher
level of suspicion. | Similar |
| Workflow
Features | Correlates a suspected
lesion in one view with a
like finding in the other
view, providing a
workflow and navigation
feature for the
interpreting physician. | No correlation of
lesions between
image views. | Links between
corresponding
regions in different
views of the breast,
which may
be utilized to
enhance user
interfaces and
workflow. | Similar to the
reference device,
Genius Al Detection
2.0 with CCMLO
provides correlation
of the CC and MLO
views when a
finding is identified. |

Summary of Substantial Equivalence:

6

Hologic, Inc. 510(k) Pre-Market Notification Genius AI Detection 2.0 CC-MLO Correlation

7

Hologic, Inc. 510(k) Pre-Market Notification Genius AI Detection 2.0 CC-MLO Correlation

8

Hologic, Inc. 510(k) Pre-Market Notification Genius AI Detection 2.0 CC-MLO Correlation

9

Hologic, Inc. 510(k) Pre-Market Notification Genius Al Detection 2.0 CC-MLO Correlation

Comparison with Predicate Device:

The Summary of Substantial Equivalence Table above details the similarities and differences between the Genius Al Detection 2.0 with CC-MLO Correlation device with the predicate Genius Al Detection 2.0, K221449 and reference device Transpara 1.7.2, K221347. Genius Al Detection 2.0 with CC-MLO Correlation is the follow-up release to the predicate, Genius Al Detection 2.0, with the ability to correlate a suspected lesion in one view with a like finding in the other view, providing a workflow and navigation feature for the interpreting physician. Both the proposed and predicate devices use the same technology per 21 CFR 892.2090. Both the predicate device and reference device aid in the detection, localization, and characterization of disease specific findings on acquired medical images. The outputs of the devices serve to augment the interpretation of digital breast tomosynthesis exams as a concurrent reading tool. The output is used to inform and assist the interpreting physician, supplementing their clinical expertise and judgment.

Genius Al Detection 2.0 with CC-MLO Correlation is compatible with the same imaging systems as the predicate device and includes a CC-MLO correlation feature similar to the reference device.

Standalone Performance Testing:

Genius AI Detection 2.0 with CC-MLO Correlation is a software-only device. The level of concern for the device is determined as Moderate Level of Concern.

Verification testing consisted of software validation testing, software integration testing and software system testing. The verification testing showed that the software application satisfied the software requirements.

Standalone evaluation testing was also conducted. The dataset used for this standalone evaluation of the CC-MLO Correlation feature is the same dataset used for the standalone evaluation of the detection performance of Genius Al Detection 2.0 (clearance K221449). This evaluation included 106 biopsy proven malignant cases and 561 screening negative cases.

10

The 106 biopsied malignant cases included lesions that were marked by an expert radiologist by generating ground truth marks and truth pairs on both orthogonal views (CC and MLO). Each case in this set contained 4 standard mammographic views.

There were 239 individual truth marks in the 106 malignant cases that were analyzed for this evaluation. 226 of those truth marks came from 113 truth pairs which included the lesions that were linked by the radiologist after identifying them on both views.

In addition, the detection pairs generated by the CC-MLO correlation feature on 658 screening negative and biopsied benign cases were reviewed by an expert radiologist.

The performance of the CC-MLO Correlation feature is evaluated by looking at different subgroups including biopsied malignant cases and negative cases. The accuracy of the CC-MLO Correlation feature was estimated in both groups by scoring the detection pairs against the truth pairs and by evaluating the expert radiologist's response, respectively.

Based on results of the verification and evaluation tests, it is concluded that the Genius AI Detection 2.0 with CC-MLO correlation device is safe and effective in detecting soft tissue lesions and calcification lesions and correlating the CC-MLO findings in tomosynthesis exams acquired with Hologic's 3D Mammography systems.

Assessment of Benefit-Risk, Safety and Effectiveness, and Substantial Equivalence:

Risk management is ensured through risk analysis which is used to identify and mitigate potential hazards. Any potential hazards are controlled via software development, verification, and validation testing. In addition, device labeling contains instructions for use and any necessary cautions and warnings to provide for safe and effective use of this device. Hologic finds that the proposed device has a positive balance in terms of probable benefits vs probable risks and thus may be considered safe and effective based on verification and validation testing.

Conclusion:

Based on the required information submitted in this premarket notification, the proposed Genius Al Detection 2.0 with CC-MLO Correlation device has been found to be substantially equivalent to the predicate Genius Al Detection 2.0, K221449. The devices have similar indications for use and aid in the detection, localization, and characterization of disease specific findings on acquired medical images. There are no issues of safety and effectiveness of the proposed Genius Al Detection 2.0 with CC-MLO Correlation device.