K Number
K223931
Manufacturer
Date Cleared
2023-01-11

(12 days)

Product Code
Regulation Number
862.1355
Panel
CH
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The Dexcom G6 Continuous Glucose Monitoring System) is a real time, continuous glucose monitoring device indicated for the management of diabetes in persons age 2 years and older.

The Dexcom G6 System is intended to replace fingerstick blood glucose testing for diabetes treatment decisions. Interpretation of the Dexcom G6 System results should be based on the glucose trends and sequential readings over time. The Dexcom G6 System also aids in the detection of evisodes of hyperglycemia, facilitating both acute and long-term therapy adjustments.

The Dexcom G6 System is also intended to autonomously communicate with digitally connected devices, including automated insulin dosing (AID) systems. The Dexcom G6 System can be used alone or in conjunction with these digitally connected medical devices for the purpose of managing diabetes.

Device Description

The proposed Dexcom G6 CGM System is based on the same physical principles and fundamental design as the predicate but includes an alternative receiver. This receiver has identical hardware to the G7 receiver (K213919). The Dexcom G6 CGM System is designed to function as intended with either the proposed or current commercial receiver. The proposed receiver has the same function as the commercial receiver.

The Dexcom G6 Continuous Glucose Monitoring System is an interoperable connected device that measures and displays glucose values for patients with diabetes. The G6 CGM System consists of three main components: a sensor/applicator, a Bluetooth Low Energy (BLE) transmitter, and a BLE enabled display device (receiver and/or mobile application). The sensor is a small and flexible wire, which is inserted by the applicator into subcutaneous tissue where it converts ducose into electrical current. The sensor has an expected wear time of up to 10 days. The transmitter is connected to the sensor and is worn on the body. The transmitter samples the electrical current produced by the sensor and converts these measurements into estimated glucose values (EGV) using an onboard algorithm. The transmitter sends glucose data to the receiver and/or mobile app, which displays the current qlucose reading (updated every 5 minutes) and glucose trends. The receiver and/or mobile app also alerts the user when glucose levels are outside of a target zone and when other important system conditions occur. The G6 CGM System is designed to be used alone or in conjunction with digitally connected devices. The G6 CGM System can communicate Estimated Glucose Values (EGV) and other information wirelessly and securely to and from these digitally connected devices.

AI/ML Overview

Based on the provided text, the acceptance criteria and study details for the Dexcom G6 Continuous Glucose Monitoring (CGM) System are not explicitly detailed in a table format with specific performance metrics. This document primarily focuses on demonstrating substantial equivalence to a predicate device, K221259, rather than presenting a comprehensive clinical performance study.

However, I can infer some information based on the context:

Acceptance Criteria and Reported Device Performance

The document states that the proposed Dexcom G6 CGM System performs "according to specifications and meets the technological and performance criteria which have not changed from the predicate device." This implies that the acceptance criteria for the new device are the same as those established for the predicate device (Dexcom G6 CGM System, K221259). Since the core components (sensor, applicator, transmitter, and app requirements) are the same, the performance is expected to be identical to the predicate.

While quantitative acceptance criteria are not explicitly listed in this document, for CGM devices, such criteria typically relate to accuracy, precision, and reliability of glucose measurements compared to a reference method (e.g., YSI analyzer for blood glucose). The predicate device would have met specific MARD (Mean Absolute Relative Difference) targets and operated within defined accuracy zones (e.g., Consensus Error Grid Analysis).

Inferred Table of Acceptance Criteria and Reported Device Performance:

Acceptance Criteria CategorySpecific Metric (Inferred)Acceptance Threshold (Inferred from predicate)Reported Device Performance (Inferred from predicate)
AccuracyMean Absolute Relative Difference (MARD)(Not specified, but generally 95-99% in A+B)Met predicate device's established CEGA performance
ReliabilitySensor wear timeUp to 10 daysUp to 10 days
FunctionalityCommunication with display devices (receiver/mobile app)Reliable and timely data transmissionReliable and timely data transmission
FunctionalityAlerting capabilities (hyper/hypoglycemia)Accurate and timely alertsAccurate and timely alerts
SafetyHuman Factors (usability)Validated through human factors testingValidated through human factors testing

Study Details:

  1. Sample size used for the test set and the data provenance:
    The document states: "Therefore, performance testing and software verification and validation testing completed for the predicate device (K221259) remain applicable." This indicates that the performance data used to demonstrate safety and effectiveness for this specific submission (K223931) is largely derived from the studies conducted for the predicate device (K221259). As such, the sample size and data provenance for the predicate device's original studies would be relevant, but are not provided in this document. For K223931, the testing specifically focused on the new receiver.

    • No specific sample size for a test set is provided within this document for K223931.
    • Data provenance for K223931's specific testing of the new receiver is not described (e.g., country of origin, retrospective/prospective). It mentions "firmware and hardware testing."
  2. Number of experts used to establish the ground truth for the test set and the qualifications of those experts:
    This information is not provided in the document. The ground truth for CGM studies typically involves laboratory reference methods (e.g., YSI blood glucose measurements), not expert consensus in the same way as imaging studies.

  3. Adjudication method (e.g., 2+1, 3+1, none) for the test set:
    This information is not provided in the document. Adjudication methods are not typically applicable to CGM device performance studies, as ground truth is established through a quantitative laboratory reference method.

  4. If a multi-reader multi-case (MRMC) comparative effectiveness study was done:
    No, an MRMC comparative effectiveness study was not done. This type of study is relevant for diagnostic imaging where human readers interpret results, often with and without AI assistance. For a CGM device, the performance is measured against a quantitative reference method, not human interpretation.

  5. If a standalone (i.e. algorithm only without human-in-the loop performance) was done:
    Yes, implicitly. The core of a CGM system's performance, particularly its accuracy (MARD, CEGA), is essentially a standalone (algorithm-only) assessment, as the device's algorithm generates the glucose values. The document states the "Glucose Value Estimation Algorithm" is a "Joint Probability Algorithm" which is the "Same" as the predicate. The performance testing for the predicate would have covered this standalone aspect.

  6. The type of ground truth used (expert consensus, pathology, outcomes data, etc.):
    While not explicitly stated for K223931, CGM studies generally use laboratory reference blood glucose measurements (e.g., YSI glucose analyzer) as the ground truth. This is the standard for evaluating the accuracy of glucose monitoring devices.

  7. The sample size for the training set:
    The document does not provide information regarding the sample size for the training set. Since the "Glucose Value Estimation Algorithm" is the "Same" as the predicate device, it implies that the algorithm was trained using data collected for the development of the original G6 system.

  8. How the ground truth for the training set was established:
    The document does not provide information on how the ground truth for the training set was established. However, similar to the test set, it would typically be established using laboratory reference blood glucose measurements during the development and training phases of the original Dexcom G6 system's algorithm.

§ 862.1355 Integrated continuous glucose monitoring system.

(a)
Identification. An integrated continuous glucose monitoring system (iCGM) is intended to automatically measure glucose in bodily fluids continuously or frequently for a specified period of time. iCGM systems are designed to reliably and securely transmit glucose measurement data to digitally connected devices, including automated insulin dosing systems, and are intended to be used alone or in conjunction with these digitally connected medical devices for the purpose of managing a disease or condition related to glycemic control.(b)
Classification. Class II (special controls). The special controls for this device are:(1) Design verification and validation must include the following:
(i) Robust clinical data demonstrating the accuracy of the device in the intended use population.
(ii) The clinical data must include a comparison between iCGM values and blood glucose values in specimens collected in parallel that are measured on an FDA-accepted laboratory-based glucose measurement method that is precise and accurate, and that is traceable to a higher order (
e.g., an internationally recognized reference material and/or method).(iii) The clinical data must be obtained from a clinical study designed to fully represent the performance of the device throughout the intended use population and throughout the measuring range of the device.
(iv) Clinical study results must demonstrate consistent analytical and clinical performance throughout the sensor wear period.
(v) Clinical study results in the adult population must meet the following performance requirements:
(A) For all iCGM measurements less than 70 milligrams/deciliter (mg/dL), the percentage of iCGM measurements within ±15 mg/dL of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 85 percent.
(B) For all iCGM measurements from 70 mg/dL to 180 mg/dL, the percentage of iCGM measurements within ±15 percent of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 70 percent.
(C) For all iCGM measurements greater than 180 mg/dL, the percentage of iCGM measurements within ±15 percent of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 80 percent.
(D) For all iCGM measurements less than 70 mg/dL, the percentage of iCGM measurements within ±40 mg/dL of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 98 percent.
(E) For all iCGM measurements from 70 mg/dL to 180 mg/dL, the percentage of iCGM measurements within ±40 percent of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 99 percent.
(F) For all iCGM measurements greater than180 mg/dL, the percentage of iCGM measurements within ±40 percent of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 99 percent.
(G) Throughout the device measuring range, the percentage of iCGM measurements within ±20 percent of the corresponding blood glucose value must be calculated, and the lower one-sided 95 percent confidence bound must exceed 87 percent.
(H) When iCGM values are less than 70 mg/dL, no corresponding blood glucose value shall read above 180 mg/dL.
(I) When iCGM values are greater than 180 mg/dL, no corresponding blood glucose value shall read less than 70 mg/dL.
(J) There shall be no more than 1 percent of iCGM measurements that indicate a positive glucose rate of change greater than 1 mg/dL per minute (/min) when the corresponding true negative glucose rate of change is less than −2 mg/dL/min as determined by the corresponding blood glucose measurements.
(K) There shall be no more than 1 percent of iCGM measurements that indicate a negative glucose rate of change less than −1 mg/dL/min when the corresponding true positive glucose rate of change is greater than 2 mg/dL/min as determined by the corresponding blood glucose measurements.
(vi) Data demonstrating similar accuracy and rate of change performance of the iCGM in the pediatric population as compared to that in the adult population, or alternatively a clinical and/or technical justification for why pediatric data are not needed, must be provided and determined by FDA to be acceptable and appropriate.
(vii) Data must demonstrate that throughout the claimed sensor life, the device does not allow clinically significant gaps in sensor data availability that would prevent any digitally connected devices from achieving their intended use.
(2) Design verification and validation must include a detailed strategy to ensure secure and reliable means of iCGM data transmission to provide real-time glucose readings at clinically meaningful time intervals to devices intended to receive the iCGM glucose data.
(3) Design verification and validation must include adequate controls established during manufacturing and at product release to ensure the released product meets the performance specifications as defined in paragraphs (b)(1) and (b)(2) of this section.
(4) The device must demonstrate clinically acceptable performance in the presence of clinically relevant levels of potential interfering substances that are reasonably present in the intended use population, including but not limited to endogenous substances and metabolites, foods, dietary supplements, and medications.
(5) The device must include appropriate measures to ensure that disposable sensors cannot be used beyond its claimed sensor wear period.
(6) Design verification and validation must include results obtained through a usability study that demonstrates that the intended user can use the device safely and obtain the expected glucose measurement accuracy.
(7) The labeling required under § 809.10(b) of this chapter must include a separate description of the following sensor performance data observed in the clinical study performed in conformance with paragraph (b)(1) of this section for each intended use population, in addition to separate sensor performance data for each different iCGM insertion or use sites (
e.g., abdomen, arm, buttock):(i) A description of the accuracy in the following blood glucose concentration ranges: less than 54 mg/dL, 54 mg/dL to less than 70 mg/dL, 70 to 180 mg/dL, greater than 180 to 250 mg/dL, and greater than 250 mg/dL.
(ii) A description of the accuracy of positive and negative rate of change data.
(iii) A description of the frequency and duration of gaps in sensor data.
(iv) A description of the true, false, missed, and correct alert rates and a description of the available glucose concentration alert settings, if applicable.
(v) A description of the observed duration of iCGM life for the device.