(57 days)
The M.U.S.T. Mini posterior cervical screw system is intended to provide immobilization of spinal segments as an adjunct to fusion, in skeletally mature patient, for the following acute and chronic instabilities of the cervical spine (C1 to C7) and the thoracic spine from T1-T3: traumatic spinal fraumatic dislocations; instability or deformity; failed previous (e.g., pseudarthrosis); tumors involving the cervical spine; degenerative disease, including intractable radior myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability.
The M.U.S.T. Mini posterior cervical screw system is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.
In order to achieve additional levels of fixation, the M.U.S.T. Mini posterior cervical screw system may be connected to the M.U.S.T. system rods with the M.U.S.T. Mini rod connectors. Transition rods with differing diameters may also be used to connect the M.U.S.T. Mini posterior cervical screw system to the M.U.S.T. system. Refer to the M.U.S.T. system package insert for a list of the M.U.S.T. indications of use.
When used with the occipital plate the M.U.S.T. Mini posterior cervical screw system is also intended to provide immobilization and stabilization for the occipito-cervico-thoracic junction (occiput - T3) in treatment of the instabilities mentioned above, including occipitocervical dislocation.
The subject M.U.S.T. MINI Posterior Cervical Screws System Extension is a Medacta M.U.S.T. MINI Posterior Cervical Screws System line extension. Specifically, the current submission includes the following implants:
- M.U.S.T. MINI Polyaxial screw dual lead solid and cannulated with diameters ranging from 4 to . 6mm and lengths from 20 to 50mm;
- M.U.S.T. MINI cross connector top load, four sizes. ●
The subject devices are made of Ti6A14V ELI according to ISO 5832-3 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium alloy and ASTM F136-13 Standard Specification for Wrought Titanium-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications.
The provided text is a 510(k) Summary for the Medacta M.U.S.T. MINI Posterior Cervical Screws System Extension. This document describes a medical device (surgical implants) and its substantial equivalence to previously cleared devices. It does not contain information about an AI/ML powered medical device, therefore, the requested information cannot be extracted.
The request asks for specific details related to an AI/ML powered medical device, such as acceptance criteria, reported device performance, sample sizes for test and training sets, data provenance, ground truth establishment, expert qualifications, adjudication methods, and results of comparative effectiveness studies (MRMC) or standalone performance studies. These are all concepts relevant to the evaluation of AI/ML software.
Since the provided text concerns mechanical surgical implants, these categories do not apply. The "Performance Data" section in the document refers to non-clinical studies (design validation, geometric comparison, dynamic biomechanical testing, pyrogenicity, biocompatibility, shelf-life) and explicitly states "No clinical studies were conducted." The non-clinical studies support the substantial equivalence of the new implants to previously cleared mechanical implants, not the performance of an AI/ML algorithm.
§ 888.3075 Posterior cervical screw system.
(a)
Identification. Posterior cervical screw systems are comprised of multiple, interconnecting components, made from a variety of materials that allow an implant system to be built from the occiput to the upper thoracic spine to fit the patient's anatomical and physiological requirements, as determined by preoperative cross-sectional imaging. Such a spinal assembly consists of a combination of bone anchors via screws (i.e., occipital screws, cervical lateral mass screws, cervical pedicle screws, C2 pars screws, C2 translaminar screws, C2 transarticular screws), longitudinal members (e.g., plates, rods, including dual diameter rods, plate/rod combinations), transverse or cross connectors, interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors), and closure mechanisms (e.g., set screws, nuts). Posterior cervical screw systems are rigidly fixed devices that do not contain dynamic features, including but not limited to: non-uniform longitudinal elements or features that allow more motion or flexibility compared to rigid systems.Posterior cervical screw systems are intended to provide immobilization and stabilization of spinal segments in patients as an adjunct to fusion for acute and chronic instabilities of the cervical spine and/or craniocervical junction and/or cervicothoracic junction such as: (1) Traumatic spinal fractures and/or traumatic dislocations; (2) deformities; (3) instabilities; (4) failed previous fusions (
e.g., pseudarthrosis); (5) tumors; (6) inflammatory disorders; (7) spinal degeneration, including neck and/or arm pain of discogenic origin as confirmed by imaging studies (radiographs, CT, MRI); (8) degeneration of the facets with instability; and (9) reconstruction following decompression to treat radiculopathy and/or myelopathy. These systems are also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.(b)
Classification. Class II (special controls). The special controls for posterior cervical screw systems are:(1) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(2) Nonclinical performance testing must demonstrate the mechanical function and durability of the implant.
(3) Device components must be demonstrated to be biocompatible.
(4) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(5) Labeling must include the following:
(i) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(ii) Intended use and indications for use including levels of fixation;
(iii) Device specific warnings, precautions, and contraindications that include the following statements:
(A) “Precaution: Preoperative planning prior to implantation of posterior cervical screw systems should include review of cross-sectional imaging studies (
e.g., CT and/or MRI) to evaluate the patient's cervical anatomy including the transverse foramen, neurologic structures, and the course of the vertebral arteries. If any findings would compromise the placement of these screws, other surgical methods should be considered. In addition, use of intraoperative imaging should be considered to guide and/or verify device placement, as necessary.”(B) “Precaution: Use of posterior cervical pedicle screw fixation at the C3 through C6 spinal levels requires careful consideration and planning beyond that required for lateral mass screws placed at these spinal levels, given the proximity of the vertebral arteries and neurologic structures in relation to the cervical pedicles at these levels.”
(iv) Identification of magnetic resonance (MR) compatibility status;
(v) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user, and;
(vi) Detailed instructions of each surgical step, including device removal.