(29 days)
The M.U.S.T. MINI Posterior Cervical Screw System is intended to provide immobilization of spinal segments as an adjunct to fusion, in skeletally mature patient, for the following acute and chronic instabilities of the cervical spine (C1 to C7) and the thoracic spine from T1-T3: traumatic spinal fraumatic dislocations; instability or deformity; failed previous (e.g., pseudarthrosis); tumors involving the cervical spine; degenerative disease, including intractable radior myelopathy, neck and/or arm pain of discogenic origin as confirmed by radiographic studies, and degenerative disease of the facets with instability.
The M.U.S.T. MINI Posterior Cervical Screw System is also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.
In order to achieve additional levels of fixation, the M.U.S.T. MINI Posterior Cervical Screw System may be connected to the M.U.S.T. System rods with the M.U.S.T. MINI rod connectors. Transition rods with differing diameters may also be used to connect the M.U.S.T. MINI Posterior Cervical Screw System to the M.U.S.T. System. Refer to the M.U.S.T. System package insert for a list of the M.U.S.T. Indications of Use.
When used with the Occipital Plate, the M.U.S.T MINI Posterior Cervical Screw System is also intended to provide immobilization and stabilization for the occipito-cervico-thoracic junction (occiput - T3) in treatment of the instabilities mentioned above, including occipitocervical dislocation.
The M.U.S.T. MINI Posterior Cervical Screws System straight rods (Ø3.5) are a line extension to the previously cleared Medacta M.U.S.T. MINI Posterior Cervical Screws System (K171369) and are provided in multiple lengths (30 - 115 mm in 5 mm increments). The M.U.S.T. MINI Posterior Cervical Screws System straight rods are manufactured from Ti-6A1-4V ELI (ISO 5832-3 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4vanadium alloy+ASTM F136 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)) and CoCrMo (ISO 5832-12 Implants for surgery -- Metallic materials -- Part 12: Wrought cobalt-chromium-molybdenum alloy + ASTM F1537 Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)).
The provided text describes the 510(k) submission for the M.U.S.T. MINI Posterior Cervical Screws System, specifically a line extension involving straight rods. However, it does not include any information about an AI/ML-based device validation study, acceptance criteria, or performance data related to AI assistance for human readers.
The content focuses on the substantial equivalence of mechanical and material properties of the new rods compared to previously cleared devices. The "Performance Data" section explicitly states that "no additional mechanical testing were performed; no design validation was undertaken" because the new rods are equivalent to longer rods in terms of mechanical strength.
Therefore, I cannot fulfill your request for information about acceptance criteria, AI device performance, sample sizes, expert ground truth, MRMC studies, or training sets from the provided text. This document pertains to a traditional medical device (spinal implants), not an AI/ML diagnostic or assistive tool.
§ 888.3075 Posterior cervical screw system.
(a)
Identification. Posterior cervical screw systems are comprised of multiple, interconnecting components, made from a variety of materials that allow an implant system to be built from the occiput to the upper thoracic spine to fit the patient's anatomical and physiological requirements, as determined by preoperative cross-sectional imaging. Such a spinal assembly consists of a combination of bone anchors via screws (i.e., occipital screws, cervical lateral mass screws, cervical pedicle screws, C2 pars screws, C2 translaminar screws, C2 transarticular screws), longitudinal members (e.g., plates, rods, including dual diameter rods, plate/rod combinations), transverse or cross connectors, interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors), and closure mechanisms (e.g., set screws, nuts). Posterior cervical screw systems are rigidly fixed devices that do not contain dynamic features, including but not limited to: non-uniform longitudinal elements or features that allow more motion or flexibility compared to rigid systems.Posterior cervical screw systems are intended to provide immobilization and stabilization of spinal segments in patients as an adjunct to fusion for acute and chronic instabilities of the cervical spine and/or craniocervical junction and/or cervicothoracic junction such as: (1) Traumatic spinal fractures and/or traumatic dislocations; (2) deformities; (3) instabilities; (4) failed previous fusions (
e.g., pseudarthrosis); (5) tumors; (6) inflammatory disorders; (7) spinal degeneration, including neck and/or arm pain of discogenic origin as confirmed by imaging studies (radiographs, CT, MRI); (8) degeneration of the facets with instability; and (9) reconstruction following decompression to treat radiculopathy and/or myelopathy. These systems are also intended to restore the integrity of the spinal column even in the absence of fusion for a limited time period in patients with advanced stage tumors involving the cervical spine in whom life expectancy is of insufficient duration to permit achievement of fusion.(b)
Classification. Class II (special controls). The special controls for posterior cervical screw systems are:(1) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(2) Nonclinical performance testing must demonstrate the mechanical function and durability of the implant.
(3) Device components must be demonstrated to be biocompatible.
(4) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(5) Labeling must include the following:
(i) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(ii) Intended use and indications for use including levels of fixation;
(iii) Device specific warnings, precautions, and contraindications that include the following statements:
(A) “Precaution: Preoperative planning prior to implantation of posterior cervical screw systems should include review of cross-sectional imaging studies (
e.g., CT and/or MRI) to evaluate the patient's cervical anatomy including the transverse foramen, neurologic structures, and the course of the vertebral arteries. If any findings would compromise the placement of these screws, other surgical methods should be considered. In addition, use of intraoperative imaging should be considered to guide and/or verify device placement, as necessary.”(B) “Precaution: Use of posterior cervical pedicle screw fixation at the C3 through C6 spinal levels requires careful consideration and planning beyond that required for lateral mass screws placed at these spinal levels, given the proximity of the vertebral arteries and neurologic structures in relation to the cervical pedicles at these levels.”
(iv) Identification of magnetic resonance (MR) compatibility status;
(v) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user, and;
(vi) Detailed instructions of each surgical step, including device removal.