(68 days)
The CREO® Stabilization System implants are non-cervical spinal fixation devices intended for posterior pedicle screw fixation (T1-S2/ilium), posterior hook fixation (T1-L5), or anterolateral fixation (T8-L5). Pedicle screw fixation is indicated for skeletally mature patients (including small stature) and for pediatric patients (CREO® 4.75 only). These devices are indicated as an adjunct to fusion for all of the following indications: degenerative disc disease (defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies), spondylolisthesis, trauma (i.e., fracture or dislocation), deformities or curvatures (i.e., scoliosis, and/or lordosis, Scheuermann's Disease), tumor, stenosis, and failed previous fusion (pseudoarthrosis). When used as an adjunct to fusion, the CREO® Stabilization System is intended to be used with autograft and/or allograft.
In addition, the CREO® Stabilization System is intended for treatment of severe spondylolisthesis (Grades 3 and 4) of the L5-S1 vertebra in skeletally mature patients receiving fusion by autogenous bone graft, having implants attached to the lumbosacral spine and/or ilium with removal of the implants after attainment of a solid fusion. Levels of pedicle screw fixation for these patients are L3-sacrum/ilium.
When used for posterior non-cervical pedicle screw fixation in pediatric patients, the CREO® 4.75 Stabilization System implants are indicated as an adjunct to fusion to treat adolescent idiopathic scoliosis. The CREO® 4.75 Stabilization System is intended to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.
In order to achieve additional levels of fixation in skeletally mature patients, the CREO® Stabilization System rods may be connected to the REVERE® Stabilization System (5.5mm or 6.35mm rod), REVERE® 4.5 Stabilization System (4.5mm rod) or ELLIPSE® Occipito-Cervico-Thoracic Spinal System (3.5mm rod) using corresponding connectors. In order to achieve additional levels of fixation in pediatric patients, the CREO® Stabilization System rods may be connected to the REVERE® 4.5 Stabilization System using corresponding connectors. Refer to the REVERE®, REVERE® 4.5, or ELLIPSE® system package insert for instructions and indications of use.
The CREO® Stabilization System consists of rods, hooks, monoaxial screws, uniplanar screws, polyaxial screws, reduction screws, locking caps, t-connectors, head offset connectors, trans-iliac connectors, staples, and associated manual surgical instruments. Implants are available in a variety of sizes to accommodate individual patient anatomy. Implant components can be rigidly locked into a variety of configurations for the individual patient and surgical condition
CREO® implants are composed of titanium alloy, cobalt chromium molybdenum alloy, or stainless steel, as specified in ASTM F136, F1295, F1472, F1537 and F138. Rods are also available in commercially pure titanium, as specified in ASTM F67. Screws are also available with hydroxyapatite (HA) coating per ASTM F1185.
Due to the risk of galvanic corrosion following implantation, stainless steel implants should not be connected to titanium, titanium alloy, or cobalt chromiummolybdenum alloy implants.
This document is a 510(k) premarket notification for the CREO® Stabilization System. It details the device's indications for use, its description, and the basis for its substantial equivalence to previously cleared devices. The document highlights mechanical testing conducted to demonstrate this equivalence.
Here's a breakdown of the requested information based on the provided text:
1. A table of acceptance criteria and the reported device performance
The document does not explicitly state "acceptance criteria" with numerical targets and then list "reported device performance" against those targets in a table format. However, it does state that mechanical testing was conducted to demonstrate substantial equivalence to predicate devices.
Acceptance Criteria (Implied) | Reported Device Performance |
---|---|
Device performance is substantially equivalent to predicate devices for mechanical properties. | Mechanical testing (static and dynamic compression and static torsion) was conducted in accordance with ASTM F1717 and the "Guidance for Industry and FDA Staff, Guidance for Spinal System 510(k)s," May 3, 2004. |
Device is sterile and biocompatible. | Bacterial endotoxin testing (BET) was conducted in accordance with ANSI/AAMI ST-72:2011. Previous sterilization and biocompatibility testing applies to the subject devices. |
2. Sample size used for the test set and the data provenance (e.g. country of origin of the data, retrospective or prospective)
The document does not specify the sample size for the mechanical testing or the data provenance (e.g., country of origin, retrospective/prospective). It only mentions that "mechanical testing (static and dynamic compression and static torsion) was conducted."
3. Number of experts used to establish the ground truth for the test set and the qualifications of those experts (e.g. radiologist with 10 years of experience)
This type of information is not applicable to this submission. The "ground truth" concept is typically relevant for studies evaluating diagnostic or AI-based devices where human expert consensus is used to label data. This document describes a medical device (spinal fixation system) cleared based on mechanical performance and substantial equivalence, not a diagnostic or AI device.
4. Adjudication method (e.g. 2+1, 3+1, none) for the test set
This information is not applicable for the same reasons as point 3. Adjudication methods are used in studies involving human interpretation or labeling of data, which is not the primary method for evaluating this type of medical device for 510(k) clearance.
5. If a multi-reader multi-case (MRMC) comparative effectiveness study was done, If so, what was the effect size of how much human readers improve with AI vs without AI assistance
This type of study is not applicable. An MRMC study evaluates the performance of human readers, typically in the context of diagnostic imaging, with and without AI assistance. This document pertains to a spinal fixation system and its mechanical and material properties, not an AI-based diagnostic tool.
6. If a standalone (i.e. algorithm only without human-in-the loop performance) was done
This information is not applicable as this is not an AI algorithm. The device is a physical medical implant.
7. The type of ground truth used (expert concensus, pathology, outcomes data, etc)
The "ground truth" in this context is the established performance standards and material properties defined by ASTM and FDA guidance documents for spinal systems. The device's performance is compared against these engineering and material specifications.
8. The sample size for the training set
This information is not applicable as this is not an AI algorithm that undergoes training.
9. How the ground truth for the training set was established
This information is not applicable as this is not an AI algorithm that undergoes training.
§ 888.3070 Thoracolumbosacral pedicle screw system.
(a)
Identification. (1) Rigid pedicle screw systems are comprised of multiple components, made from a variety of materials that allow the surgeon to build an implant system to fit the patient's anatomical and physiological requirements. Such a spinal implant assembly consists of a combination of screws, longitudinal members (e.g., plates, rods including dual diameter rods, plate/rod combinations), transverse or cross connectors, and interconnection mechanisms (e.g., rod-to-rod connectors, offset connectors).(2) Semi-rigid systems are defined as systems that contain one or more of the following features (including but not limited to): Non-uniform longitudinal elements, or features that allow more motion or flexibility compared to rigid systems.
(b)
Classification. (1) Class II (special controls), when intended to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the treatment of the following acute and chronic instabilities or deformities of the thoracic, lumbar, and sacral spine: severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra; degenerative spondylolisthesis with objective evidence of neurologic impairment; fracture; dislocation; scoliosis; kyphosis; spinal tumor; and failed previous fusion (pseudarthrosis). These pedicle screw spinal systems must comply with the following special controls:(i) Compliance with material standards;
(ii) Compliance with mechanical testing standards;
(iii) Compliance with biocompatibility standards; and
(iv) Labeling that contains these two statements in addition to other appropriate labeling information:
“Warning: The safety and effectiveness of pedicle screw spinal systems have been established only for spinal conditions with significant mechanical instability or deformity requiring fusion with instrumentation. These conditions are significant mechanical instability or deformity of the thoracic, lumbar, and sacral spine secondary to severe spondylolisthesis (grades 3 and 4) of the L5-S1 vertebra, degenerative spondylolisthesis with objective evidence of neurologic impairment, fracture, dislocation, scoliosis, kyphosis, spinal tumor, and failed previous fusion (pseudarthrosis). The safety and effectiveness of these devices for any other conditions are unknown.”
“Precaution: The implantation of pedicle screw spinal systems should be performed only by experienced spinal surgeons with specific training in the use of this pedicle screw spinal system because this is a technically demanding procedure presenting a risk of serious injury to the patient.”
(2) Class II (special controls), when a rigid pedicle screw system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion in the treatment of degenerative disc disease and spondylolisthesis other than either severe spondylolisthesis (grades 3 and 4) at L5-S1 or degenerative spondylolisthesis with objective evidence of neurologic impairment. These pedicle screw systems must comply with the following special controls:
(i) The design characteristics of the device, including engineering schematics, must ensure that the geometry and material composition are consistent with the intended use.
(ii) Non-clinical performance testing must demonstrate the mechanical function and durability of the implant.
(iii) Device components must be demonstrated to be biocompatible.
(iv) Validation testing must demonstrate the cleanliness and sterility of, or the ability to clean and sterilize, the device components and device-specific instruments.
(v) Labeling must include the following:
(A) A clear description of the technological features of the device including identification of device materials and the principles of device operation;
(B) Intended use and indications for use, including levels of fixation;
(C) Identification of magnetic resonance (MR) compatibility status;
(D) Cleaning and sterilization instructions for devices and instruments that are provided non-sterile to the end user; and
(E) Detailed instructions of each surgical step, including device removal.
(3) Class II (special controls), when a semi-rigid system is intended to provide immobilization and stabilization of spinal segments in the thoracic, lumbar, and sacral spine as an adjunct to fusion for any indication. In addition to complying with the special controls in paragraphs (b)(2)(i) through (v) of this section, these pedicle screw systems must comply with the following special controls:
(i) Demonstration that clinical performance characteristics of the device support the intended use of the product, including assessment of fusion compared to a clinically acceptable fusion rate.
(ii) Semi-rigid systems marketed prior to the effective date of this reclassification must submit an amendment to their previously cleared premarket notification (510(k)) demonstrating compliance with the special controls in paragraphs (b)(2)(i) through (v) and paragraph (b)(3)(i) of this section.