(90 days)
The Ahmed™ Glaucoma Valve is indicated for the management of refractory glaucomas, where previous surgical treatment has failed, or by experience is known not to provide satisfactory results. Such refractory glaucomas can include neovascular glaucoma, primary open angle glaucoma unresponsive to medications, congenital or infantile glaucoma, and refractory glaucomas resulting from aphakia or uveitis
The Ahmed™ Glaucoma Valve Model FP7 (AGV-FP7) is a valved aqueous drainage implant designed to regulate intraocular pressure in eyes suffering from intractable glaucoma. The Ahmed™ device is comprised of a silicone drainage tube that is connected to a valve mechanism. This valve mechanism is the same in the AGV-FP7 and the predicate AGV-S2. The valve mechanism consists of a silicone sheet folded and pressed between two complimentary polypropylene plates. The valve mechanism is securely positioned in a pocket inside of a silicone endplate that serves to distribute the aqueous humor from the anterior chamber of the eye over the surface of the endplate. The valve in the AGV-FP7 behaves like a variable resistor, decreasing resistance to allow more flow when intraocular pressure is high. When pressure is low, the resistance to fluid outflow is high and the valve closes, thereby preventing hypotony. By means of the valve mechanism, the AGV-FP7 maintains intraocular pressure within the appropriate physiological range.
In both the AGV-S2 and AGV-FP7, the silicone sheet is folded and pressed between two polypropylene plates. In the AGV-S2, the bottom polypropylene plate is comprised of the polypropylene endplate body. In the AGV-FP7, the polypropylene bottom plate is separate from the silicone endplate material. The valve mechanism is inserted into a pocket in the silicone endplate to fixate the valve components to the endplate. Additional differences include stiffening ribs in the posterior half of the AGV-FP7 to add stiffness to the flexible endplate, The other predicate device, the Baerveldt Glaucoma Implant (BGI) also consists of a flexible silicone endplate which shares some features with the AGV-FP7, though the BGI endplate is larger in area. The AGV-FP7 endplate has the same curvature as the average human eye at its equator and also protects the valve from blockage by fibrous tissue. The endplate is made of flexible silicone. Inflammation and scarring around flexible silicone implants in animal ocular tissue was less pronounced than that found around rigid polypropylene.
The provided text is a Premarket Notification [510(k)] Summary for the Ahmed™ Glaucoma Valve Model FP7. It describes the device, its intended use, and claims substantial equivalence to existing predicate devices. However, this document does not contain the detailed study information needed to fill out all the fields requested in your prompt.
Here's what can be extracted and what information is missing:
1. Table of Acceptance Criteria and Reported Device Performance:
The document mentions that the AGV-FP7 has "similar IOP and complication rates to the predicate devices." Specifically, it states, "compared to the AGV-S2, the IOP of the AGV-FP7 groups was lower (within the acceptable physiological range) and fewer complications were reported."
However, **explicit acceptance criteria (e.g., "IOP must be reduced by X mmHg" or "complication rate must be
§ 886.3920 Aqueous shunt.
(a)
Identification. An aqueous shunt is an implantable device intended to reduce intraocular pressure in the anterior chamber of the eye in patients with neovascular glaucoma or with glaucoma when medical and conventional surgical treatments have failed.(b)
Classification. Class II. The special controls for this device are FDA's:(1) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical Devices—Part I: Evaluation and Testing,’ ”
(2) “510(k) Sterility Review Guidance of 2/12/90 (K90-1),” and
(3) “Aqueous Shunts—510(k) Submissions.”