(266 days)
No
The summary does not mention AI, ML, or any related concepts like algorithms that learn or adapt. The device description focuses on programmed electrical stimulation and hardware components.
Yes
The device is intended to deliver electrical spinal cord stimulation to improve hand sensation and strength in individuals with a neurological deficit, which are therapeutic actions.
No
The device is described as a medical device that delivers transcutaneous programmed electrical spinal cord stimulation to improve hand sensation and strength. Its intended use is therapeutic (treatment), not diagnostic (identifying or characterizing a disease or condition).
No
The device description explicitly lists multiple hardware components: ARCEX Stimulator, ARCEX Stimulator Charger, ARCEX Splitter Box, ARCEX Extension Cables, ARCEX Programmer, Programmer Charger, and ARCEX Case. It also mentions the use of FDA-cleared electrodes. This indicates it is a hardware-based medical device with associated software for programming and control.
Based on the provided information, the ARCEX System is not an In Vitro Diagnostic (IVD) device.
Here's why:
- IVD Definition: In Vitro Diagnostic devices are used to examine specimens taken from the human body (like blood, urine, tissue) to provide information for diagnosis, monitoring, or screening.
- ARCEX System Function: The ARCEX System delivers transcutaneous electrical stimulation to the spinal cord. It is a therapeutic device used in conjunction with rehabilitation to improve hand function. It does not analyze any biological samples.
- Intended Use: The intended use clearly states it's for delivering electrical stimulation to improve hand sensation and strength, not for diagnostic testing of samples.
- Device Description: The description details the components of an electrical stimulation system, not equipment for analyzing biological specimens.
Therefore, the ARCEX System falls under the category of a therapeutic medical device, not an In Vitro Diagnostic device.
N/A
Intended Use / Indications for Use
The ARCEX System is intended to deliver programmed, transcutaneous electrical spinal cord stimulation in conjunction with functional task practice in the clinic to improve hand sensation and strength in individuals between 18 and 75 years old that present with a chronic, non-progressive neurological deficit resulting from an incomplete spinal cord injury (C2-C8 inclusive).
Product codes
SDO
Device Description
The ARCES System is a medical device that delivers transcutaneous programmed. Carrier Frequency-enabled electrical spinal cord stimulation (ARCEN Therapy). The System is intended to be used in conjunction with functional task practice in the clinic to improve hand sensation and strength in individuals with cervical spinal cord injury (SCI).
The stimulation is intended to be delivered transcutaneously and the active electrodes are intended to be placed in direct contact with intact skin, in appropriate locations along or near the spine to elicit desired outcomes. The ARCES System is intended to be used in a medical center setting by patients and their rehabilitation professionals.
Mentions image processing
Not Found
Mentions AI, DNN, or ML
Not Found
Input Imaging Modality
Not Found
Anatomical Site
Spine, hand, cervical spinal cord
Indicated Patient Age Range
18 and 75 years old
Intended User / Care Setting
medical center setting by patients and their rehabilitation professionals.
Description of the training set, sample size, data source, and annotation protocol
Not Found
Description of the test set, sample size, data source, and annotation protocol
Not Found
Summary of Performance Studies
One clinical investigation was performed to evaluate the safety and effectiveness of the ARCEX system. The results are published in Moritz et al. 2024 (Moritz, C., Field-Fote, E.C., Tefertiller, C. et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 30, 1276-1283 (2024). https://doi.org/10.1038/s41591-024-02940-9).
The study was a prospective, non-randomized, within-subject controlled trial performed at fourteen (14) investigational sites, five (5) of which were located outside of the United States, in Canada, the Netherlands, and Scotland. The study enrolled adults (at least 22 years of age) who had experienced a C2-C8 incomplete spinal cord injury (SCI) at least 12 months prior and had upper limb weakness and not paralysis as evidenced by screening assessments.
The goal of the study was to assess whether adjunctive use of the transcutaneous spinal cord stimulator (ARCEX system) would improve upper limb strength and sensation when used adjunctively with intensive outpatient rehabilitation in individuals with chronic incomplete cervical SCI. Sixty-five participants were enrolled and ultimately 60 completed the study. The study was carried out in two phases. In Phase 1, each participant completed 2 months of intensive outpatient rehabilitation, consisting of 60-minute sessions with 12-20 sessions a month. They completed functional assessments at baseline, after the first month, and after the second month. They also completed the standard Box and Blocks test at each rehabilitation session. Those who completed the study completed at least 24 sessions over the rehabilitation-only phase, with a mean of 25 sessions. Participants then went onto Phase 2, during which they completed another 2 months of the same intensive outpatient rehabilitation schedule with the addition of transcutaneous spinal cord stimulation via the ARCES system. Monthly assessments during Phase 2 were completed with stimulation turned off. Those who completed the study completed at least 24 sessions over the rehabilitation-only phase, with a mean of 25 sessions.
All study participants underwent the same monthly assessments. These consisted of:
- The International Standards for Neurological Classification of Spinal Cord Injury - Upper Extremity Motor Score (ISNCSCI-UEMS) to assess change in upper limb strength
- The Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP)-- Strength. Prehension Performance, and Sensibility subscales to assess change in upper limb strength, function, and sensation
- Pinch and grasp forces to assess change in pinch and grasp strength
- Capabilities of Upper Extremity Test (CUE-T) to assess change in upper limb function
- The International Standards for Neurological Classification of Spinal Cord Injury - Upper Extremity Sensory Score (ISNCSCI-UESS) to assess change in upper limb sensation
Key Results:
From baseline to 2 months (end of rehabilitation-only phase), participants (N=60) demonstrated a mean improvement in the measures as follows:
- ISNCSCI-UEMS: Mean 0.2, P-value 0.292
- GRASSP—Strength: Mean 3.6, P-value
N/A
0
DE NOVO CLASSIFICATION REQUEST FOR ARCEX SYSTEM
REGULATORY INFORMATION
FDA identifies this generic type of device as:
Transcutaneous electrical spine stimulator to improve skeletal muscle strength and sensation. A transcutaneous electrical spine stimulator to improve skeletal muscle strength and sensation is a device that can be programmed to apply an electrical current via electrodes on a patient's skin over the spine to improve muscle strength and sensation after neurological deficit.
NEW REGULATION NUMBER: 21 CFR 890.5851
CLASSIFICATION: Class II
PRODUCT CODE: SDO
BACKGROUND
DEVICE NAME: ARCEX System
SUBMISSION NUMBER: DEN240014
DATE DE NOVO RECEIVED: March 28, 2024
SPONSOR INFORMATION:
Onward Medical Inc. 50 Milk Street Boston, Massachusetts 02109
INDICATIONS FOR USE
The ARCEX System is indicated as follows:
The ARCES System is intended to deliver programmed, transcutaneous electrical spinal cord stimulation in conjunction with functional task practice in the clinic to improve hand sensation and strength in individuals between 18 and 75 years old that present with a chronic, non-progressive neurological deficit resulting from an incomplete spinal cord injury (C2-C8 inclusive).
LIMITATIONS
1
The sale, distribution, and use of the ARCESS System are restricted to prescription use in accordance with 21 CFR 801.109.
In FDA's evaluation of the benefits of the ARCEX device, the following observations were noted:
- Probable benefits of the ARCEA therapy were observed only in conjunction with intensive . outpatient rehabilitation.
- . Due to the nature of the single-arm, within-subject control, open-label study design, it is unclear which improvements in outcome measures were the result of device use or ongoing intensive rehabilitation effects. (Refer to Summary of Clinical Information for more details)
- . There are no demonstrated functional benefits associated with the device. This includes no demonstration of neurological recovery as defined by change in neurological level of injury as per America Spinal Injury Association (ASIA) exam, or ASIA Impairment Scale (AIS) grade.
- . Durability testing of benefits has not been completed: persistence of benefits beyond adjunctive device use with rehabilitation are currently unknown.
Contraindications
- . The ARCEX System is contraindicated for patients with active implantable devices or wearable defibrillators.
Warnings and Precautions
- The long-term effects of chronic electrical stimulation are unknown.
- . Operation in close proximity (e.g. 1 m) to shortwave or microwave therapy medical electrical equipment may produce instability in the Stimulator output.
- . Safety of use during pregnancy has not been established.
- Caution should be used for patients with suspected or diagnosed heart problems. .
- . Caution should be used for patients with suspected or diagnosed epilepsy.
Risks:
- . Autonomic dysreflexia may be triggered by electrical stimulation. The chances of experiencing autonomic dysreflexia can be reduced by following these precautions:
- . Ensure patient has emptied their bladder and bowels before starting a session with the ARCEX System.
- Do not use ARCEX System if there is an ongoing bladder infection or fever. ●
- . Electrical stimulation may lead to musculoskeletal spasms, stiffness, and pain. If this occurs, consider adapting the stimulation parameters (e.g. reduce amplitude) or if symptoms persist, pause the therapy session. For more details on how to adjust stimulation parameters, refer to Labeling (Instructions for Use).
- . Electrical stimulation may lead to skin irritation, sweating and redness. If this occurs, move the electrode(s) to a new location.
- Electrical stimulation may lead to a temporary increase in heart rate. If this persists, adapt . the stimulation parameters (e.g. reduce amplitude) or if symptoms persist, pause the
2
therapy session. For more details on how to adjust stimulation parameters, refer to Labeling (Instructions for Use).
- It is normal for electrical stimulation to cause some discomfort, paresthesia, or neuralgia. ● This sensation may become familiar as the patient uses the ARCEX System.
PLEASE REFER TO THE LABELING FOR A COMPLETE LIST OF WARNINGS, PRECAUTIONS AND CONTRAINDICATIONS.
DEVICE DESCRIPTION
The ARCES System is a medical device that delivers transcutaneous programmed. Carrier Frequency-enabled electrical spinal cord stimulation (ARCEN Therapy). The System is intended to be used in conjunction with functional task practice in the clinic to improve hand sensation and strength in individuals with cervical spinal cord injury (SCI).
The stimulation is intended to be delivered transcutaneously and the active electrodes are intended to be placed in direct contact with intact skin, in appropriate locations along or near the spine to elicit desired outcomes. The ARCES System is intended to be used in a medical center setting by patients and their rehabilitation professionals.
Image /page/2/Figure/6 description: The image shows the ARCEX system, which includes a programmer, stimulator, and splitter box. The programmer is a tablet-like device with the word "Welcome" displayed on the screen. The stimulator is a white device with a power button and two other buttons. The splitter box is connected to the stimulator and has four ports labeled 1, 2, 3, and 4 on one side and A, B, C, and D on the other side. The system is connected to a person's body with electrodes placed on the neck and abdomen.
Figure 1: Schematic representation of ARCEX System
The primary components of the ARCEX System are:
- ARCEX Stimulator .
De Novo Summary (DEN240014)
The Stimulator is an internally powered device equipped with a rechargeable battery. It generates and delivers electrical stimulation to the Electrodes based on commands received from the ARCEX Programmer.
- ARCEX Stimulator Charger ● The Stimulator Charger is a wired charger used to recharge the Stimulator battery.
3
-
. ARCEX Splitter Box
The Splitter Box is used to connect and transmit current from the Stimulator to the Electrodes (via the Extension Cables). -
ARCEX Extension Cables ●
The Extension Cables are used to connect the Splitter Box to the Electrodes. Two different Extension cable lengths are provided: short Extension Cables (50 cm/19.7 inches long) long Extension Cables (100 cm/39.4 inches long) -
ARCEX Programmer ●
The Programmer is an off-the-shelf tablet with the ARCEX PRO app pre-installed and can be used by the Rehabilitation Professional, to exchange data with the Stimulator. -
Programmer Charger The Programmer Charger (Tablet Charger) is used to recharge the Tablet battery.
-
ARCEX Case ●
The Case is intended for transportation and storage, in between use, of the ARCEA System.
The ARCES System is intended to be used with the FDA-cleared Axelgaard PALS electrodes (K132422).
Stimulation Parameters:
Electrical stimulation parameters generated by the ARCEX System are summarized in the table below:
Parameter | Values |
---|---|
Waveform | Monophasic or Biphasic |
Monophasic Stimulation Pulse | |
Amplitude range | 0 mA – 100 mA |
For load impedance range from 150 Ohms to 500 | |
Ohms | |
Monophasic Balance Pulse | |
Amplitude range | 0 mA – 12.5 mA |
Note: the amplitude is configured automatically for | |
charge balancing. | |
Biphasic Stimulation Pulse | |
Amplitude range | 0 mA – 250 mA |
For load impedance range from 150 Ohms to 500 | |
Ohms |
Table 1: Stimulation Parameters
4
| Intra-burst Pulse Repetition
Frequency | 10000 Hz or 20000 Hz |
---|---|
Intra-burst Pulse Width | 50 us or 100 us |
Carrier Frequency | 5000 Hz or 10000 Hz |
Frequency | 0.2 Hz – 100 Hz |
Pulse (Burst) Width | 0.1 ms – 5 ms |
Ramp-up Duration | 2 s – 60 s |
Program Duration | 1 min – 180 min |
SUMMARY OF NONCLINICAL/BENCH STUDIES
BIOCOMPATIBILITY/MATERIALS
The patient contacting materials are:
Table 15: Patient contacting part - description and duration
Part | Description of contact | Cumulative duration |
---|---|---|
Electrodes | Direct contact with intact skin for the duration of therapy (1 hour per session) | Long term contact |
Extension Cable | Direct contact with intact skin for the duration of therapy (1 hour per session) | Long term contact |
Splitter clip | Box Clipped to patients' clothes (clothes, pocket, collar, etc.), can be in direct contact with intact skin if clipped on collar | Prolonged contact |
Overall biocompatibility evaluation:
Parts are in direct contact with intact skin only.
All the materials in Table 15: Patient contacting part - description and duration and mentioned in section 17.2.2 are listed in Section B in the Attachment G of the FDA Guidance on the use of ISO 10993, and are known to have a documented history of safe use.
- None of the exclusion criteria listed in Section C of Annex G apply. ●
In the framework of a least burdensome approach, no further testing was deemed necessary per ISO 10993-1, and the ARCER System was determined to not raise a significant biological risk.
Electrodes:
Description: In normal use of the ARCEX System, the primary patient contacting components are the Electrodes, affixed to the patient's intact skin. The ARCEX System is labeled for use only with compatible Electrodes:
- o Round active Electrodes
5
- o Rectangular return Electrodes
Both Electrode types are manufactured by Axelgaard and have been previously cleared by FDA (K132422) for the same nature of body contact and contact duration.
Biocompatibility evaluation: These Electrodes have demonstrated biocompatibility based on evaluations per ISO 10993-1 "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process." Their use with the ARCEX System does not impact biocompatibility and no new assessment of these cleared devices are required.
Extension cable:
- . Description: Extension Cables are connected to the Electrodes (active and return), and the Splitter Box. Up to 8 Extensions Cables can be used in a therapy session, depending on the number of Electrodes set by the Rehabilitation professional. Sections of the cable and the cable plugs connected to the Electrodes are in direct contact with patient skin. for the duration of the therapy. The Extension Cable body is silicone based, and extension cable plugs are made of polyamide.
- . Biocompatibility evaluation:
Biocompatibility testing of the Extension Cables, including cytotoxicity, sensitization, and irritation was provided. The testing followed the appropriate standards, and the results support the Extension Cables are non-cytotoxic, non-sensitizing, and non-irritating.
This testing was viewed as supplementary information since adequate information per Attachment G for the Extension Cables was provided.
- (1) Toxicology risk assessment of color additives: Color additive information was provided. The color additives in the extension cable and plug were titanium dioxide and carbon black. The color additive information for the Extension Cable (body and white housing of plugs) and the toxicological risk assessment of the color additives was provided and found to be acceptable.
Splitter Box:
- Description: Splitter Box is connected directly to the Stimulator and to the Extension Cables. It is intended to be clipped to the patient's clothes by means of the Splitter Box Clip (indicated by an arrow on Figure 5), including a clipping to the collar. Splitter Box Clip is coated with Polyurethane (Cardinal Polyurethane Coating 6700-BK21129) on a Polycarbonate enclosure.
- Biocompatibility evaluation: ●
Additionally, the sponsor submitted biocompatibility testing of the Splitter Box Clip, including cytotoxicity, and irritation, followed the appropriate standards, and the results support the Splitter Box Clip is non-cytotoxic and non-irritating. We note that it is unclear if the test article is representative of the final device, and there was no sensitization testing;
6
however, this testing was viewed as supplementary information since there was adequate information per Attachment G for the Splitter Box Clip. Toxicology risk assessment of color additives: Color additive information was provided. The color additives in the splitter box were titanium dioxide, carbon black, yellow iron oxide and red iron oxide. The color additive information for the Splitter Box Clip and the toxicological risk assessment of the color additives was provided and found to be acceptable.
SHELF LIFE/STERILITY
Sterility:
The ARCES system is non-sterile. It is meant for multiple uses with different patients when used in the hospital environment. The Off-The-Shelf (OTS) electrodes are nonsterile and are intended for multiple uses for a single patient. They are intended to be replaced when their adhesive no longer fully adheres to the skin.
Shelf-Life:
The ARCEX system does not have a shelf-life. The device is non-invasive, externally used, and comprised entirely of electronic components and medical grade plastics. The composition of the device, including the rechargeable battery, does not predispose it towards deterioration and diminution of its safety and effectiveness when stored under conditions specified in device labeling. As such the device is not adversely affected by aging and has no shelf-life specifications. The expiry date of the Electrodes (previously cleared under K132422) is 3 years and is specified on the Electrode's packaging. The Electrodes are replaceable and information on how to obtain new electrodes is included in the user manual.
ELECTROMAGNETIC CAPABILITY & ELECTROMAGNETIC SAFETY
Testing was performed to conform to the following FDA recognized standards:
Electromagnetic compatibility (EMC):
- IEC 60601-1-2:2014/A1:2020 Medical electrical equipment Part 1-2: General . requirements for basic safety and essential performance - Collateral Standard: Electromagnetic disturbances - Requirements and tests
- IEC/TR 60601-4-2 Edition 1.0 2016-05 Medical electrical equipment Part 4- 2: ● Guidance and interpretation - Electromagnetic immunity: performance of medical electrical equipment and medical electrical systems
- ANSI AAMI HA60601-1-11:2015+AMD1:2021 Medical Electrical Equipment --. Part 1-11: General requirements for basic safety and essential performance --Collateral Standard: Requirements for medical electrical equipment and medical electrical equipment and medical electrical systems used in the home healthcare environment
7
Electrical, thermal, and mechanical safety:
- ANSI/AAMI ES60601-1:2005/A2:2021Medical electrical equipment General . requirements for basic safety and essential performance
- . ANSI AAMI HA60601-1-11:2015+AMD1:2021 Medical Electrical Equipment --Part 1-11: General requirements for basic safety and essential performance --Collateral Standard: Requirements for medical electrical equipment and medical electrical equipment and medical electrical systems used in the home healthcare environment
- . IEC 60601-2-10 2016 - Ed. 2.1 Medical electrical equipment - Part 2-10: Particular requirements for the basic safety and essential performance of nerve and muscle stimulator
Battery safety:
- . IEC 62133-2:2017 - Secondary cells and batteries containing alkaline or other non-acid electrolytes - Safety requirements for portable sealed secondary lithium cells, and for batteries made from them, for use in portable applications - Part 2: Lithium systems
- UN38.3.5 United Nations Recommendations on the Transport of Dangerous . Goods Manual of Tests and Criteria PARTIII, section 38.3 (ST/SG/AC.10/11/Rev.6/Amend.1).
- EN IEC 55035:2017/A111:2020 Electromagnetic compatibility of multimedia . equipment - Immunity requirements
MAGNETIC RESONANCE (MR) COMPATIBILITY
The ARCES device is not an implant and is not intended to be used with the MR environment (Computed Tomography (CT) system, operating room table, etc.) and therefore MR compatibility was not evaluated and not needed.
SOFTWARE & CYBERSECURITY
The device software and cybersecurity documentation was provided according to FDA Guidance document, "Content of Premarket Submissions for Device Software Functions," issued June, 2023. The software level of documentation was determined to be Enhanced. Complete verification and validation of all components of the device, including software, hardware, firmware, cybersecurity, wireless compatibility and coexistence were provided.
PERFORMANCE TESTING - BENCH
Testing was performed to conform to the following FDA recognized standards:
8
- IEC 60601-2-10 2016 Ed. 2.1 Medical electrical equipment Part 2-10: . Particular requirements for the basic safety and essential performance of nerve and muscle stimulator
SUMMARY OF CLINICAL INFORMATION
One clinical investigation was performed to evaluate the safety and effectiveness of the ARCEX system. The results are published in Moritz et al. 2024 (Moritz, C., Field-Fote, E.C., Tefertiller, C. et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 30, 1276-1283 (2024). https://doi.org/10.1038/s41591-024-02940-9).
The study was a prospective, non-randomized, within-subject controlled trial performed at fourteen (14) investigational sites, five (5) of which were located outside of the United States, in Canada, the Netherlands, and Scotland. The study enrolled adults (at least 22 years of age) who had experienced a C2-C8 incomplete spinal cord injury (SCI) at least 12 months prior and had upper limb weakness and not paralysis as evidenced by screening assessments.
The goal of the study was to assess whether adjunctive use of the transcutaneous spinal cord stimulator (ARCEX system) would improve upper limb strength and sensation when used adjunctively with intensive outpatient rehabilitation in individuals with chronic incomplete cervical SCI. Sixty-five participants were enrolled and ultimately 60 completed the study. The study was carried out in two phases. In Phase 1, each participant completed 2 months of intensive outpatient rehabilitation, consisting of 60-minute sessions with 12-20 sessions a month. They completed functional assessments at baseline, after the first month, and after the second month. They also completed the standard Box and Blocks test at each rehabilitation session. Those who completed the study completed at least 24 sessions over the rehabilitation-only phase, with a mean of 25 sessions. Participants then went onto Phase 2, during which they completed another 2 months of the same intensive outpatient rehabilitation schedule with the addition of transcutaneous spinal cord stimulation via the ARCES system. Monthly assessments during Phase 2 were completed with stimulation turned off. Those who completed the study completed at least 24 sessions over the rehabilitation-only phase, with a mean of 25 sessions.
All study participants underwent the same monthly assessments. These consisted of:
The International Standards for Neurological Classification of Spinal Cord Injury - Upper Extremity Motor Score (ISNCSCI-UEMS) to assess change in upper limb strength
- The Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP)-- Strength. Prehension Performance, and Sensibility subscales to assess change in upper limb strength, function, and sensation
- -Pinch and grasp forces to assess change in pinch and grasp strength
- Capabilities of Upper Extremity Test (CUE-T) to assess change in upper limb function -
- -The International Standards for Neurological Classification of Spinal Cord Injury - Upper Extremity Sensory Score (ISNCSCI-UESS) to assess change in upper limb sensation
From baseline to 2 months (end of rehabilitation-only phase), participants (N=60) demonstrated a mean improvement in the measures as follows:
9
Measure | Mean | Standard Deviation | 90% Confidence Interval | P-value |
---|---|---|---|---|
ISNCSCI-UEMS | 0.2 | 2.9 | -0.5, 0.8 | 0.292 |
GRASSP—Strength | 3.6 | 6.6 | 2.2, 5.1 |