K Number
DEN120015
Device Name
EEVA 2.0
Manufacturer
Date Cleared
2014-06-06

(651 days)

Product Code
Regulation Number
884.6195
Panel
OB
Reference & Predicate Devices
AI/MLSaMDIVD (In Vitro Diagnostic)TherapeuticDiagnosticis PCCP AuthorizedThirdpartyExpeditedreview
Intended Use

The Eeva System is indicated to provide adjunctive information on events occurring during the first two days of development that may predict further development to the blastocyst stage on Day 5 of development. This adjunctive information aids in the selection of embryo(s) for transfer on Day 3 when, following morphological assessment on Day 3, there are multiple embryos deemed suitable for transfer or freezing.

Device Description

The Eeva System provides image recording and automated analysis of cell division from high resolution time-lapse images collected until day 3 (72 hours) of development. Results of cell division timing parameters (time from first to second mitosis: and time from second to third mitosis) are provided to the user in addition to a prediction of the likelihood that an embryo will develop to the blastocyst stage. These timing parameters are based on those published in a study by Wong, et. al. (2010).

The Eeva System incorporates: (1) a set of up to four time-lapse image microscopes that automatically take darkfield microscopy images of embryos at regular intervals (every 5 minutes) while the embryos remain in the incubator environment, (2) Eeva Computer and other components (Control Box, Station, Scope Screen and Printer), (3) system software for image capture and recording, user interface, and patient database and (4) image analysis software that automatically identifies embryo development events, compares their times to specified timing parameters and makes a prediction of embryo development to the blastocyst stage. The system is installed in an In Vitro Fertilization (IVF) laboratory, and is to be used as an adjunct to the traditional morphological method to identify the embryos that are more likely to develop into blastocysts.

AI/ML Overview

The Eeva™ System is indicated as an adjunct to traditional morphology evaluation to aid in the selection of embryo(s) for transfer on Day 3 when multiple embryos are deemed suitable for transfer or freezing. It helps predict the likelihood of an embryo developing to the blastocyst stage on Day 5/6.

1. Table of Acceptance Criteria & Reported Device Performance:

The document primarily focuses on clinical performance characteristics rather than specific hard-coded acceptance thresholds for every metric. However, for "Software Validation," a clear acceptance criterion is defined and met. For the primary and secondary endpoints in the Pivotal Adjunct Use Study, the outcome of statistical significance against stated objectives serves as the "acceptance."

MetricAcceptance CriteriaReported Device Performance
Software ValidationSpecificity of Eeva System software non-inferior to embryologist measurements; Lower limit of 95% CI for specificity of Eeva System software ≥ 65%.Eeva System specificity: 85.12%. Embryologist specificity: 82.64%. Lower limit of 95% CI for Eeva specificity: 77.71%. Met.
Pivotal Adjunct Use Study (Primary Endpoint)Blastocyst Odds Ratio (OR) for adjunct prediction (for Good/Fair embryos) statistically significantly greater than 1.Overall OR for adjunct prediction: 2.56 (95% CI: [1.75, 3.74], p

§ 884.6195 Assisted Reproduction Embryo Image Assessment System.

(a)
Identification. An Assisted Reproduction Embryo Image Assessment System is a prescription device that is designed to obtain and analyze light microscopy images of developing embryos. This device provides information to aid in the selection of embryo(s) for transfer when there are multiple embryos deemed suitable for transfer or freezing.(b)
Classification. Class II (special controls). The special control(s) for this device are:(1) Clinical performance testing must demonstrate a reasonable assurance of safety and effectiveness of the device to predict embryo development. Classification performance (sensitivity and specificity) and predictive accuracy (Positive Predictive Value and Negative Predictive Value) must be assessed at the subject and embryo levels.
(2) Software validation, verification, and hazard analysis must be provided.
(3) Non-clinical performance testing data must demonstrate the performance characteristics of the device. Testing must include the following:
(i) Total light exposure and output testing;
(ii) A safety analysis must be performed based on maximum (worst-case) light exposure to embryos, which also includes the safety of the light wavelength(s) emitted by the device;
(iii) Simulated-use testing;
(iv) Mouse Embryo Assay testing to assess whether device operation impacts growth and development of mouse embryos to the blastocyst stage;
(v) Cleaning and disinfection validation of reusable components;
(vi) Package integrity and transit testing;
(vii) Hardware fail-safe validation;
(viii) Electrical equipment safety and electromagnetic compatibility testing; and
(ix) Prediction algorithm reproducibility.
(4) Labeling must include the following:
(i) A detailed summary of clinical performance testing, including any adverse events;
(ii) Specific instructions, warnings, precautions, and training needed for safe use of the device
(iii) Appropriate electromagnetic compatibility information;
(iv) Validated methods and instructions for cleaning and disinfection of reusable components; and
(v) Information identifying compatible cultureware and explain how they are used with the device.